
On the Use of Intelligent Agents as Partners
in Training Systems for Complex Tasks1

Thomas R. Ioerger, Joseph Sims, Richard A. Volz
Department of Computer Science, Texas A&M University

College Station, TX 77843-3112
fioerger,jms3627,volzg@cs.tamu.edu

Judson Workman, Wayne L. Shebilske
Department of Psychology, Wright State University

Dayton, OH 45435-0001
judwwork@yahoo.com, wayne.shebilske@wright.edu

Abstract

Training protocols that involve working with a human
partner have been shown to be beneficial for learning
complex tasks. In this paper, we explore emulating the
function of the partner with an intelligent agent. Given
a cognitive task analysis, the task can be decomposed
into cognitive components, and these behaviors can be
independently automated using agent-programming tech-
niques. Then a trainee and the agent can work together to
solve practice problems, each taking responsibility for a
different function. We argue that it is desirable not only
for the agent to produce correct and consistent behavior
(e.g. demonstrating the optimal strategy), but also to ap-
pear realistic (human-like, including errors), and we show
how this can be achieved by introducing randomness in
an agent’s decisions. We implemented a Partner Agent
for Space Fortress, a laboratory task designed to be repre-
sentative of complex tasks, and found that trainees who
swapped roles with this agent during training achieved
significantly higher performance scores asymptotically
than those who trained using a standard (whole-task)
training protocol. We also simulated 3 different levels
of expertise and found that trainees who worked with an
“expert-level” agent received the most benefit.

Introduction
In the modern industrialized and technology-driven
world, there is a great need for development of new train-
ing methods for complex tasks. By complex tasks, we
mean tasks that have a cognitive dimension of difficulty,
such as demands on reasoning, attention, memory, and so
on, not just a physical skill based on strength or dexterity
(though they may include these). Examples of complex
tasks include driving vehicles, piloting aircraft, operating
machinery, etc. Such tasks require extensive training for
operators to learn the necessary details of how a device
works, modes of operation, procedures for controlling it,
regulations and limitations, signals for error/failure con-
ditions, and means for recovering from them. Operators
must not only learn this information by memory, but also
be able to apply it in practice, often under real-time con-
straints with competing demands on perception, mem-
ory, etc. Schneider (Schneider, 1985) gives a characteri-
zation of complex tasks and discusses issues for training.

The need for new training systems is more prevalent
today than ever before, especially given economic pres-

1This work was supported in part by MURI grant #F49620-
00-1-0326 from DoD and AFOSR.

sures to do more with fewer resources. In the com-
mercial/manufacturing world, workers constantly need
re-training to operate new models of machines as they
are developed, or shift processes/jobs as the market de-
mands. The military, too, is filled with jobs involving
operation of complex, technological equipment, which
people (typically young adults with little prior experi-
ence) must be trained rapidly to operate safely and effec-
tively. In all these environments, the transition between
textbook knowledge and practical skill must be achieved
efficiently and effectively, minimizing both training re-
sources (need for instructors, dedicated training equip-
ment, simulators, etc.) and time.

Complex tasks present a fundamental challenge for
the development of training systems. On the one hand,
whole-task training (e.g. immersion, on-the-job training)
is ineffective because the novice is usually over-whelmed
by the complexity of the task. They fail at first, but they
are often unable to comprehend why or make incremen-
tal improvements. On the other hand, part-task training
(such as learning to steer a car and operate the pedals sep-
arately) can be less effective because novices do not get
a chance to experience the inter-play between the parts.
Part-task training does not allow trainees to practice per-
forming the sub-tasks together, which often requires sig-
nificant additional effort to manage shared cognitive re-
sources, such as dividing or shifting attention.

One interesting training protocol that has shown
promise for complex tasks ispartner-based training, for
example, the AIM (Active Interlocked Modeling) pro-
tocol (Shebilske et al., 1992). AIM involves groups of
trainees working together to solve a problem (e.g. oper-
ating a device within a simulated scenario). In the case
of AIM-Dyad, there are two trainees acting as partners.
Each trainee performs part of the task while his partner
does the other part, and later they switch roles. This po-
tentially solves the dilemma of complex-task training be-
cause it reduces their individual demands, allowing them
to focus on automating one cognitive component at a
time, which is more tractable, while maintaining the con-
text of the whole task.

It has been shown that the AIM protocol of partner-
based training can improve performance over standard
individual practice (e.g. whole-task training) for the
same amount of time. For example, in Space Fortress,
a computer-based laboratory task designed to emulate

characteristics of a complex task (specifically, flying a
fighter jet), AIM-Dyad was implemented by alternatively
having one trainee operate the joystick while the other
trainee operated the mouse. Over a total of 10 hours of
practice, trainees using this partner-based protocol per-
formed as well at the task as individuals who had been
trained using whole-task training. That is, they reached
the same scores (individually) as a control group trained
by simply giving them instructions and letting them try
to maximize their score over the same amount of time
(Shebilske et al., 1992; Arthur et al., 1997). Thus AIM-
Dyad produces an increase in efficiency over the stan-
dard (individual) training protocol by reducing the time,
equipment, and trainers needed for each group in half.

The fact that AIM can provide training that is equal to
an individualized training method is somewhat surpris-
ing, given that each trainee experiences only half of the
hands-on experience on average. The proposed explana-
tion for this is that, while trainees are performing their
own part of the task, they are “modeling” the behavior of
their partner. In fact, the magnitude of performance im-
provement has been shown to correlate with intelligence
measures of one’s partner (Shebilske et al., 1999), sug-
gesting that they are learning from each other more than
just their own part of the task (Bandura, 1986).

However, this benefit of training with a partner does
not intrinsically require interaction between the partners.
In a previous study, the role of social variables (ranging
from verbal communication to visual cues such as body
language) were investigated by having the dyad perform
the task in physically-separated cubicles with connected
consoles. Still, they reached the same level of proficiency
after training (Shebilske et al., 1999). Furthermore, this
effect held even when trainees were told that the other
part of the task was being performed by a computer.

This observation makes an important suggestion: that
the role of a partner in training could be automated by
using an intelligent agent. Agents are software programs
that can autonomously make decisions and act to achieve
goals in a dynamic (real-time) environment. There are
many possible roles that agents could play in a training
system. In this paper, we describe a principled approach
to incorporating agents in training, called the Partner
Agent protocol, based on the arguments for cognitive
benefits given above. We discuss a number of design
criteria and implementation issues in developing partner
agents. To test our hypothesis about the effectiveness of
this new protocol, we implemented partner agents for the
Space Fortress task, and we show that trainees were able
to out-perform (reach higher scores than) those trained
with the standard control (whole-task) protocol.

The success of our first experiment led to an interest-
ing follow-up question:Does the level of expertise sim-
ulated by the partner agent affect the magnitude of per-
formance improvement by the trainee? Because trainees
are believed to “model” the behavior of their partners, it
might be expected that different behaviors by the agent
will influence trainees differently. More specifically, if
the agent’s performance is similar to a novice (i.e. laden

with errors), the trainee will not be able to learn cor-
rect behaviors, while if the agent’s actions are too pre-
cise (i.e. expert), this might be incomprehensible to the
novice, effectively setting an unattainable goal. There-
fore, we ran a second experiment where we actively ma-
nipulated the level of expertise simulated by the partner
agent, and we evaluated whether there was any differ-
ence in training with the different agents. The results
show that training in Space Fortress with a partner agent
that simulates a human expert provides the most benefit.

Partner Agent Design
There are a wide variety of ways in which intelli-
gent agents could be used within a computer-based
training system, ranging from automated opponents to
coaches (Rickel and Johnson, 1999) to performance sup-
port. Intelligent agents are software programs that have
the following characteristics: 1) they aregoal-oriented
(proactive, seeking to achieve goals given to them),
2) they arereactive (situated within a dynamic envi-
ronment in which they need to take actions to change
the state to achieve their goals), and 3) they areau-
tonomous(can make decisions without human interven-
tion) (Wooldridge and Jennings, 1995). In addition,
agents may have other common characteristics, such as
beingadaptive(learning from their experiences) orco-
operative(interacting with other agents or humans).

Intelligent agents have a potential for training that
goes beyond traditional intelligent tutoring systems
(ITS’s) (Anderson et al., 1990). ITS’s are systems de-
signed for training based on AI techniques, especially
expert systems and case-based reasoning. The trainee
is usually presented with a problem to solve, and the ITS
monitors the actions taken. If the problem was not solved
correctly, an analysis of the actions is made to identify
gaps in the trainee’s knowledge, to be remediated by fur-
ther instruction focussed in that area. The main chal-
lenge of an ITS is to interpret the actions the trainee
takes and construct plausible explanations of the miss-
ing/incorrect knowledge that led to those actions. This is
often called “user modeling,” and can be performed by
techniques ranging from abduction (proof completion)
to plan recognition to probabilistic inference (e.g. with
Bayesian belief nets).

While intelligent agents may incorporate user-
modeling capabilities too, they go beyond ITS’s by being
able to dynamically interact with the problem-solving
environment, and thus to drive (alter) the scenario, or
actively participate with the trainee in solving the prob-
lem. An agent can be given goals that involve helping
(facilitating) the trainee, correcting mistakes, remind-
ing, off-loading tasks (performance support), providing
advice on or explaining correct actions (decision aid),
demonstrating correct behavior, adapting the scenario to
the trainee’s skill level (modifying events to be more
or less challenging), making the scenario more realis-
tic by simulating elements in the scenario reacting to the
trainee’s actions (more flexible than scripted scenarios),
and even creating challenges by intentionally preventing

the trainee from succeeding by easy means and forcing
them to apply deeper knowledge (e.g. a tactical enemy
that is difficult to defeat in a combat simulation). These
all require agent techniques such as planning and infer-
ence to be able to decide which actions to take to achieve
their goals, given the current state of scenario (including
user’s prior actions).

Our approach, based on cognitive principles described
above, is to use agents as active partners for trainees in
solving problems. The advantage of using agents for
creating virtual partners is that agents can be used to
demonstrate correct behavior by giving them knowledge
of the optimal strategy. Furthermore, agents will apply
this knowledge consistently without getting tired, giving
trainees a stable target behavior to model. This assumes
that: a) sufficient inputs (perceptions) are available from
the simulation environment to determine the correct be-
havior, b) the correct action depends on a quantifiable
judgement (i.e. not nebulous “intuition”), and c) the de-
cision can be made within the time available (i.e. the up-
date cycle-time of the simulation).

The use of agents as active partners places several con-
straints on the design of the agent. To be effective as a
partner for training humans, an agent should have the fol-
lowing qualities:

� Correctness- In order for the agent to relate the tar-
get strategy to the trainee, the agent must perform the
strategy correctly.

� Consistency- The partner agent should also be con-
sistent in its overall behavior. Inconsistency makes the
learning process harder for the trainee.

� Realism - Relative to humans, agents have the poten-
tial to perform certain actions, make decisions, and re-
spond with unnatural speed and accuracy, which is of
less benefit for the purposes of demonstration. It is de-
sirable for agents to exhibit more human-like behavior
so that the performance appears achievable to trainees.

� Exploration - Exploration refers to how many differ-
ent “situations” the agent gets the human into. Without
exploration, the trainee cannot make a proper mental
model or, for example, learn how to recover from er-
rors simply because he has not experienced them.

How can a partner agent be designed to meet these de-
sired criteria? There are a number of intelligent agent
architectures that could be used to implement intelligent
behaviors and decision-making within a simulated en-
vironment, including SOAR, PRS/dMARS, RETSINA,
etc. Each architecture has a different approach to rep-
resenting goals, domain knowledge, and actions. Each
architecture defines a different mechanism for determin-
ing which sequence of actions it could take that would
lead to accomplishing its goals by transforming the state
of the world. Decision-making mechanisms range from
reactive rule-based systems, to logical theorem-provers,
to complex planning algorithms. In our approach, the
appropriate knowledge is given to the agent for each

sub-function of the task, representing cognitively distinct
parts of the overall task (this would have to be based on
a formal cognitive task analysis). Then, during training,
the agent would perform one part of the task while the
trainee performs the other.

Although agents can be used to satisfy the correctness
and consistency criteria, something else must be added
to introduce realism and exploration.Our approach to
adding realism to an agent’s behavior is to artificially
limit the speed and/or accuracy of responses by intro-
ducing stochastic errors. For example, random delays
could be added to response times, a small percentage
of incorrect classifications could be added to a judge-
ment/recognition task, or a small amount of imprecision
could be added to a motor control component. The mag-
nitude and frequency of mistakes made by the agent can
be calibrated to measurements of human levels. These
errors produce a variance in the agent’s behavior that is
important for bothrealism(humans often make mistakes,
especially under high task-load) andexploration(allow-
ing trainees to experience different parts of the problem
space and practice recovering from errors).

Experiments

Space Fortress
To test our hypotheses, we implemented a partner agent
for training human subjects in Space Fortress. Space
Fortress is a laboratory task that was designed by re-
searchers at the University of Illinois in the 1980’s as
representative of complex tasks for experiments with hu-
man performance and learning. The subject controls a
“space ship” on a computer screen (see Figure 1). The
ship may be rotated using a joystick, and it can move
forward (in whatever direction it is pointing) by pressing
forward on the joystick to fire a thruster. The ship can
also fire “missles” by pressing a button on the joystick.
There is a “fortress” in the center of the screen that can-
not move, but can rotate and fire shells back at the ship
to defend itself. The primary goal of the task is to de-
stroy the fortress (as quickly as possible) without being
destroyed. It takes ten single-shots (no faster than 250ms
apart) followed by a double-shot (within 250ms) to de-
stroy the fortress.

In addition to the fortress, another hazard in this en-
vironment consists of mines that appear randomly and
float through the space, attracted toward the ship. When
a mine appears, the subject must make a judgement about
whether it is a friend or enemy mine before shooting at
it (IFF: identify friend-or-foe). This is determined by
ASCII characters that appear on screen. Prior to the task,
the subject is given three characters to remember. When
one of the letters in the memory-set appears on screen
with a mine, the mine is a foe; for all other characters, the
mine is a friend. The subject must double-click the right
mouse-button within certain time constraints to indicate
a foe, and then shoot the mine. If the subject makes the
wrong choice (or does not respond quickly enough), the
mine becomes indestructible and will continue to pursue

Emphasize
Total
Score

Session 999
Pract.Game
1 of 8

Session 999
Pract.Game
1 of 8

Emphasize
Total
Score

PNTS CNTRL VLCTY VLNER IFF INTRVL SPEED SHOTS

10000203186 200

Figure 1: Space Fortress display.

the ship until it hits it (causing loss of points, and some-
times destruction of the ship) or times out and disappears.

Formally, the goal of the game is to maximize the To-
tal score. The Total score is the sum of four sub-scores:
Points, Velocity, Control, and Speed (indicated at the
bottom of the screen for instant feedback). Points re-
flects the overt objectives of the game; the Points score
increases for shooting and destroying the fortress and
mines, and decreases for getting hit by or destroyed
by them. Velocity scores are awarded for keeping the
ship below a certain speed threshold. Control points are
awarded for keeping the ship within the corridor between
the two hexagons on screen (as opposed to flying a lin-
ear trajectory and wrapping around the screen). Speed
reflects the timing of IFF judgements. In addition, sub-
jects must maintain awareness of their supply of ammu-
nition (missles). From time to time bonus opportunities
appear (which the subjects must learn to recognize) and
a decision must be made whether to add missiles to the
ammunition supply or add points to the score.

Space Fortress represents a challenging task, both in
terms of motor control as well as cognitive demands.
Subjects must learn motor skills such as “tapping” the
joystick to orient the ship (e.g. for accurate aiming),
timed responses on button presses (e.g. for firing missles,
IFF). In addition, Space Fortress has cognitive com-
plexity involving memory, perception, attention, and
decision-making. Examples include: a) following the
rules of the game (different responses for friend vs. foe
mines; 10 shots followed by a double shot to destroy
the fortress, etc.), b) memorizing characters that indicate
friend mines, c) keeping track of shots and missles, and
d) deciding how to make bonus selections (for details,
see (Mane and Donchin, 1989)). Furthermore, position,
trajectory, and velocity are manipulated through acceler-
ation (thrust) only, making it second-order control, which
requires complex mental (spatial) calculations of vectors.
Because of all these demands, Space Fortress typically
takes on the order of 10 hours to learn. Novices typi-
cally score around -2000 in their first trials, and can reach
scores as high as 5000-6000 (experts) asymptotically af-
ter training.

Implementation of the Partner Agent
We implemented an intelligent agent within the Space
Fortress game that could control various parts of the
game autonomously. The function-decomposition was
based on a cognitive task analysis by Frederikson and
White (Frederiksen and White, 1989), who analyzed the
cognitive components of the overall task (e.g. navigation,
aiming and firing, dealing with mines, managing missle
resources). These tend to involve either the mouse or the
joystick, without much interaction, so they can be easily
separated. The agent was made able to control the direc-
tion and velocity of the ship and fire missles, as a human
could do with the joystick, and the agent is able to man-
age IFF and select bonuses, as a human could do with the
mouse. These functions can be decoupled and controlled
independently, so the agent can act as a partner to the hu-
man by controlling one device-function while the human
manipulates the other.

The agent was implemented by modifying the Space-
Fortress source code (written in the C language) to mimic
and over-ride inputs from the physical controls (joystick
and mouse). The game is designed to run on a 46 ms
update cycle, during which: a) inputs from the devices
are sampled, b) state parameters (e.g. velocity, orienta-
tion) of objects are modified, c) the positions of objects
on the screen are updated, and d) the game scores are
revised. During an update, the actions available to the
agent are: turn the ship, thrust, fire a missle, identify
mines as friend or foe, or make a bonus selection. The
agent implements a decision-making procedure that in-
volves evaluating a number of conditions, such as speed,
distance from fortress, appearance of mines, time since
last button-press, number of missles left, etc., to deter-
mine which action is most appropriate to take at any
given time.

The initial implementation of this decision-making
procedure created an agent whose performance was so
good that it did better than even the best-trained humans
(scores around 8000, demonstrating a perfect strategy).
However, we wanted to simulate a more natural level
of expertise. The basic strategy for accomplishing this
was to add a degree of randomness to the agent’s sim-
ulated control inputs. For example, humans (especially
novices) do not fire at the SF at exactly 250ms intervals.
Furthermore, they do not always thrust in the ideal direc-
tion or for the perfect amount of time to properly control
their trajectory. Thus, the decision procedure was mod-
ified by adding randomness to following aspects:delay
to identify mines- random between 0.2s and 1.0s (uni-
form); delay in firing - follows a Poisson distribution
with a mean of�1s;variance in thrust applied- range of
1-3 cycles, with mean of 2 (80ms);precision of aiming-
rotations within�5Æ of desired.

The behavior produced by this second version of the
agent was more realistic and can generate scores at the
level that the best humans (i.e. “experts”) can achieve
after training (around 5000 points, mean total score of
top 5% of humans after 100 games by the standard train-
ing protocol). The agent appears to take essentially the

correct actions, with small but believable imperfections
in navigation and firing; it takes a little longer for the
agent to destroy the fortress, but it still usually destroys
the fortress before making one complete cycle around the
hexagon.

Design of the Initial Experiment
In this experiment, the hypothesis we were testing is:
Does training with a Partner Agent provide increased
performance over training with other types of (individ-
ual) training? For comparison, we evaluated the effects
of training with the Partner Agent with a standard con-
trol training protocol, in which trainees simply practiced
the whole task by themselves, trying to maximize To-
tal score All trainees received the same standard instruc-
tions (written and on video tape) and two initial practice
sessions for exposure, followed by an opportunity to ask
questions. Then all trainees performed the task for 10
3-hour sessions spread over 4 days, where each session
consisted of 8 three-minute trials, followed by 2 test tri-
als, interspersed with rest breaks. Trainees following the
Partner Agent protocol were randomly assigned to start
with either the joystick or the mouse, and thereafter al-
ternated roles with the agent on each trial. As subjects,
40 male students from the Department of Psychology at
Wright State University were selected who played video
games less than 20 hours per week; 20 subjects were as-
signed randomly to each protocol.

Results
The results of the experiment are shown in Figure 2. The
graph shows the average scores for the two test trials
at the end of each session (the baseline is the score for
the practice trials before the first session; indicated as
Session 0 in the graph). The scores are averaged over
the 20 subjects in each group, with error bars indicating
standard error for each measurement. It is clear that the
Partner Agent protocol led to a higher asymptotic per-
formance after 10 sessions of training that the standard
control protocol. The final difference in performance be-
tween the two groups is significant at thep < 0:05 level
by paired T-test (t = 2:23 > 2:04, df = 38).

When performance is decomposed into sub-scores
(Table 1), trainees with the Partner Agent were found to
do better on each component after 10 sessions of train-
ing than those who used the standard control protocol,
although the differences were only statistically signifi-
cant for the Velocity and Speed scores (lack of signifi-
cance for Control and Points scores is potentially due to
the high variance and small sample sizes). The reason
that the magnitude of improvement was greater for some
sub-scores than others may reflect differential impacts of
observation versus hands-on practice for sub-skills, de-
pending on the degree to which they rely on implicit or
explicit processing during the approach to automaticity
(Goettl et al., 1997).

Effect of Level of Expertise
The success of the first experiment led to a follow-up
question: Does the level of expertise simulated by the

-3000

-2000

-1000

0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8 9 10 11

S
p
a
c
e

F
o
r
t
r
e
s
s

S
c
o
r
e

Session

Control
Partner Agent

Figure 2: Results from the first experiment.

Table 1: Final sub-scores after 10 session of training
(with standard errors in parentheses).

Control Protocol Partner Agent
Velocity 49.7 (215.7) 709.1 (136.6)
Control 903.2 (94.8) 1077.9 (50.1)
Speed 438.3 (69.7) 639.5 (49.6)
Points 750.2 (174.4) 1143.5 (189.8)
Total 2141.4 (435.0) 3570.0 (351.3)

Partner Agent affect the magnitude of performance im-
provement with training?We hypothesized that it would,
based on evidence that trainees model the behavior of
their partners, and the performance improvement is cor-
related with the intelligence of their partner. To test this
hypothesis, we created three variants of the agent, sim-
ulating three different levels of expertise: novice, inter-
mediate, and expert. These behaviors were defined oper-
ationally in terms of the following reference groups: “ex-
perts” were defined as those who achieved scores in the
top 5% after 10 sessions of training, “novices” were the
baseline scores of these subjects prior to training (equiv-
alent to the whole pool of trainees, since those who be-
came experts were not distinguishable), and “intermedi-
ates” were defined as trainees who had reached a To-
tal score halfway between novice (baseline) and expert
(which could occur in any session). Novices tend to lack
control, fly too fast, go outside the hexagon, and even
wrap around, missing the fortress and mines with shots,
and getting destroyed more often than destroying the
fortress, whereas experts rarely get hit, navigate slowly
around the fortress with many incremental thrusts, and
typically destroy the fortress within one complete pass.

The different behaviors of the Partner Agent were gen-
erated by adding different amounts of randomness to the
timing and precision of the agent’s actions. For exam-
ple, the time delay in identifying mines was varied from
around 0.5s (for experts) up to around 4s (for novices;
just at the boundary of when mines time-out). Aim-
ing accuracy ranged between�5Æ (experts) and�8Æ

(novices). Thrust durations ranged from a mean of 80ms

Table 2: Target skill levels for defining behaviors of
Novice, Intermediate, and Expert agents.

agent Points Control Velocity Speed Total
Novice -863 462 -388 21 -768
Inter. 412 1072 673 490 2645
Expert 2314 1229 1132 958 5633

Table 3: Results of second experiment, showing Total
scores after training (10 sessions) with Partner Agents of
different skill levels.

Protocol Mean Std. Err. Participants
Expert Agt. 3611 514 15
Intermed. Agt. 2306 475 18
Novice Agt. 2120 587 13
Control 2034 467 19

(experts; shorter impulses create finer control) to 320ms
(novices). And the delay for bonus selection ranged
from around 0.4s (expert) to around 9s (novices), with
intermediates making judgements at around 4s. No er-
rors were introduced into the correctness of IFF judge-
ments, as humans are rarely observed to make mistakes
at this. The behavior of each agent was calibrated against
the scores and sub-scores of the target group (shown in
Table 2) by adjusting the internal parameters until the
scores were within one standard deviation (see (Sims,
2002)).

This second experiment was conducted much like the
first. Male psychology students were drawn as subjects
and randomly assigned to one of four groups: control
(standard instruction and practice), novice partner agent,
intermediate partner agent, and expert partner agent.
Trainees in each group performed 10 sessions of train-
ing, each consisting of 8 three-minute trials followed by
two test trials. Table 3 shows the final scores, after the
10 sessions, averaged over all subjects in each group.
The results indicate that training with the expert Partner
Agent provided the most benefit, and that simulating in-
termediate or novice levels of expertise did not provide
improvements over the standard control protocol.

Discussion
The fact that training with a Partner Agent improves the
asymptotic performance of trainees over those who use
the standard control protocol contrasts with earlier exper-
iments with the AIM-Dyad protocol (with human part-
ners). AIM-Dyad has consistently been shown to reach
the samelevels of performance as the control protocol
(Arthur et al., 1997). The advantage of it is that partner-
based training requires fewer resources, such as instruc-
tors, workstations, etc. Thus, it can be said the AIM-
Dyad provides an improvement in trainingefficiency
but noteffectiveness. While the Partner Agent protocol
looses the gain in efficiency (since humans are training
individually again), it demonstrates an increase in train-
ing effectiveness, based on the statistically significantly
higher scores reached by trainees after 10 sessions.

The methods for developing the Partner Agent used in
these experiments could potentially be used for building
intelligent training systems for complex tasks in other
domains too. The primary requirement is the avail-
ability of a cognitive task analysis to define the sub-
components of the task (at a cognitive level). These func-
tions would then be automated through agent program-
ming, e.g. by building a knowledge base of goals and
actions for achieving them that could be used for making
decisions. The behavior of the agent can be made more
realistic (human-like) by introducing artificial errors (in-
accuracy) and random time delays in actions taken by the
agent. While this was accomplished in this work by man-
ually tuning internal parameters for randomness to match
the performance of the agent to target human groups, it
might also be possible to use more automated methods to
capture human-like strategies and behaviors (including
errors) directly from transcripts of human-performance
data, such as by using reinforcement learning (Kaelbling
et al., 1996).

References
Anderson, J., Boyle, C., Corbett, A., and Lewis, M. (1990).

Cognitive modelling and intelligent tutoring.Artificial
Intelligence, 42:7–49.

Arthur, W., Day, E., Bennett, W., McNelly, T., and Jordan, J.
(1997). Dyadic versus individual training protocols: Loss
and reacquisition of a complex skill.Jour. of Applied Psy-
chology, 82(5):783–791.

Bandura, A. (1986).Social Foundations of Thought and Ac-
tion: A Social Cognitive Theory. Prentice Hall, Engle-
wood Cliffs, NJ.

Frederiksen, J. and White, B. (1989). An approach to training
based upon principled task decomposition.Acta Psycho-
logica, 71:89–146.

Goettl, B., Snooks, S., Day, E., and Shebilske, W. (1997). Em-
phasis change and verbal elaboration in skill acquisition:
A tale of two components. InProceedings of the Hu-
man Factors and Ergonomics Society 41st Annual Meet-
ing, pages 1195–1199.

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforce-
ment learning: A survey.Artificial Intelligence Research,
4:237–285.

Mane, A. and Donchin, E. (1989). The Space Fortress game.
Acta Psychologica, 71:17–22.

Rickel, J. and Johnson, W. (1999). Virtual humans for team
training in virtual reality. InProceedings of Ninth World
Conference on AI in Education, pages 578–585.

Schneider, W. (1985). Training high-performance skills: Falla-
cies and guidelines.Human Factors, 27(3):285–300.

Shebilske, W., Jordan, J., Goettl, B., and Day, E. (1999). Cog-
nitive and social influences in training teams for complex
skills. Journal of Experimental Psychology: Applied,
5:227–249.

Shebilske, W., Regian, J., W. Arthur, J., and Jordan, J. (1992).
A dyadic protocol for training complex skills.Human
Factors, 34(3):369–374.

Sims, J. (2002). The use of partner agents in training systems
for complex tasks. MS thesis, Department of Computer
Science, Texas A&M University.

Wooldridge, M. and Jennings, N. (1995). Intelligent agents:
Theory and practice.Knowledge Engineering Review,
10(2):115–152.

