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ABSTRACT

Combat simulations are playing an increasing role in training in the military.  This is especially true for training staff officers in tactical operations centers (TOCs) at intermediate echelons.  In the University XXI project at Texas A&M University, we are developing a digital battle-staff trainer (DBST) system. For implementing the DBST, a multi-agent architecture called TaskableAgents has been designed for simulating the internal operations, decision-making, and interactions of battalion TOC staffs. The core of the TaskableAgents Architecture is a knowledge representation language called TRL.  The application of knowledge in TRL to select actions for an agent is carried out by an algorithm called APTE.  By communicating and sharing information based on reasoning about each other’s roles, the TaskableAgents Architecture allows multiple agents to work together as teams to accomplish collective goals.  This general approach could be used to simulate the intelligent behaviors of a wide variety of tactical decision-making units in military combat simulations.  
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1. INTRODUCTION
In the future as in the past, it will be the job of the battle commander and his staff to make decisions and monitor their execution in the midst of great uncertainty. Battlefield simulations are playing an increasing role in training.  Improving the ability to simulate aggregate-level behavior in battlefield simulations is essential for a variety of purposes in the modern military, from planning, to training, to course-of-action analysis.  More and more, battle command success will depend on using information dominance to increase the speed and precision of those decisions. 

Currently, distributed simulations such as ModSAF and JANUS provide semi-autonomous control of entities (e.g. tanks), and smaller units (up to company size). However, larger units, such as battalions, brigades, and divisions are more difficult to simulate because of the high level of human decision-making, and the coordination and exchange of information within and between battle staffs.  Commanders exercise command-and-control, making complex decisions that attempt to carry out their operations orders within the current situation, while remaining reactive to events that diverge from expectations (e.g. being flanked).  The commander's staff, including sections for intelligence, maneuver, air defense, fire support, and engineering, is responsible for collecting information about enemy locations and performing battle damage assessment, monitoring friendly troop positions and strength, planning or removing obstacles, etc., and must cooperate to assemble this information into a coherent assessment of the situation for the commander, including identification of threats, or reporting of commander's pre-specified priority information requirements (PIRs).  These activities often generate a significant amount of communication and interaction among friendly units on the battlefield (e.g. status reports, requests for information, requests for support, as well as fragmentary orders, calls for fire, etc.) that are often not captured in existing simulations but are an essential aspect of generating believable human-like behavior and producing realistic actions in these aggregate units.  Indeed, a large part of staff training exercises at the brigade-level involves practicing efficient exchange of information and coordination among staff officers, and the corresponding staff sections in their subordinate battalions.  

Intelligent agent technology is well suited for simulating these high-level types of information-oriented behaviors.  Agents are software processes that can utilize domain knowledge (e.g. strategies, effects of terrain on mobility, enemy weapons capabilities) to achieve goals that they are assigned (e.g. mission objectives, reconnaissance, attack, defense, deterrence).  Intelligent agents have a great potential to improve the effectiveness for training in such environments by making certain entities have the appearance of intelligent reactions and interaction. 

In the University XXI project, we are developing a digital battle-staff trainer (DBST) system.  For implementing the DBST, a multi-agent architecture has been designed for simulating the internal operations, decision-making, and interactions of battalion tactical operations centers (TOC's). Our agents are based on a newly developed architecture, called TaskableAgents, which focuses on dynamic plan execution and monitoring through the application of procedural knowledge as well as rule-based inference.  We describe agents that represent various functional areas within a battle staff, and we show how communication actions between staff members (within the battalion TOC, and also in the brigade TOC) can be generated from common operating procedures (tasks and methods) for each function.  Finally, we describe an implementation of this architecture as a distributed system in which multiple agents may run concurrently on separate computers and interact over a network with a simulation server that maintains and manipulates the state of the scenario.

2. TASKABLEAGENTS ARCHITECTURE

The DBST physically consists of a network of computers (PC's running Linux), with one or more running OTB (OneSAF Testbed Baseline, a constructive battlefield simulator), one or more running trainee console interfaces, and one or more running agents (e.g. simulated battalion TOC's or other staff officers).  The agents in our DBST are implemented in the TaskableAgents Architecture, which is an evolution from our previous research [1].  The TaskableAgents Architecture can be described in terms of the standard model of a situated agent interacting with its environment, in which the agent performs an iterative sense-decide-act loop [2].  The core of the TaskableAgents Architecture is a knowledge representation language called TRL, for Task Representation Language, which is used for describing procedural information (e.g. about tasks and methods) needed by the agent.  The application of this knowledge to select actions for an agent is carried out by an algorithm called APTE, for Adaptive Protocol for Task Execution, which serves as a kind of interpreter for TRL.  We start by describing these components of the TaskableAgents Architecture from the perspective of individual agents, and then discuss its multi-agent extension.

2.1  TASK REPRESENTATION LANGUAGE
The most unique feature of TaskableAgents is the Task Representation Language, TRL [1].  TRL provides descriptors for representing four fundamental types of information: goals, tasks, methods, and operators.  Goals represent conjunctive combinations of conditions that the agent is supposed to achieve, such as: defend the northern region or secure the area to the east. Tasks represent generic types of activities that the agent can engage in, such as attacking, reporting, maneuvering, intelligence gathering, etc.  Tasks can have several different methods associated with them, and unique preference conditions can be used to characterize when it is most appropriate to use each method to carry out a task.  Methods define specific procedures, encoded in an expressive process language with sequential, iterative, conditional, and parallel constructs.  Examples of methods would be like the specific sequence of steps involved in securing an area, performing a search-and-rescue, or issuing a fragmentary order.  The processes may refer to and invoke other tasks (as sub-tasks), or may ground out in operators, such as sending a message, requesting information, calling for fire, or maneuvering units. These operators, which can be implemented in arbitrary Java code, might produce effects on the trainees’ interfaces (e.g. displaying a request for support), they might directly talk to the simulation (move units in OTB), or they might be issued to a "puckster" as a surrogate to carry out the action manually.

While goals and operators are the focus of typical AI-based planning systems [3], in the TaskableAgents Architecture, greater emphasis is placed on encoding tasks and methods.  These might be extracted from field manuals, documents analyzing staff functions, SOP's (standard operating procedures), TTP's (techniques, tactics, and procedures), METL's (mission essential task lists), etc.  Much of this material is oriented toward helping staff officers understand what to do under various circumstances by providing doctrinal procedures to follow.

TRL uses a LISP-like syntax (i.e. with nested parentheses), though it does not rely on a LISP interpreter in any way.  Each descriptor starts with a keyword, such as :TASK or :METHOD, a symbolic name, and a list of formal parameters. The parameters allow arguments to be passed in when a task is invoked, such as (Monitor unit-57).  The task for Monitor might look like:

(:Task Monitor (?unit)

 (:Term-cond (destroyed ?unit))

  (:Method (track-with-UAV ?unit) 

    (:Pref-cond (not (weather cloudy))))

  (:Method (follow-with-scouts ?unit)  

    (:Pref-cond (ground-cover dense))))

(:Method track-with-UAV (?unit)

 (:Pre-cond (have-assets UAV))

 (:Process

 (:seq 

  (:if(:cond(not(launched UAV)))(launch UAV))

   (:let((x y)(loc ?unit ?x ?y))(fly UAV ?x ?y))

   (circle UAV ?x ?y))))

Notice that several types of conditions are referred to in this example. These are logical conditions that can be evaluated by an inference engine (the '?' prefix signifies variables).  TaskableAgents uses a backward-chaining theorem prover implemented in Java, called JARE (Java Automated Reasoning System).  A knowledge base of battlefield domain knowledge (e.g. definitions of unit types and organization, weapons capabilities, terrain effects, threat assessment, etc.) can be given in the form of Horn clauses (i.e. if-then rules), which JARE can use to determine whether conditions are satisfied as queries.  Tasks and methods may both have termination conditions, which are capable of interrupting their operation whenever they become true.  Methods may also define a set of pre-conditions, which state under what circumstance the method can be initiated; for example, track-with-UAV would require access to UAV (Unmanned Aerial Vehicle) assets.

We have implemented a parser and a graphical tool for displaying, browsing, and editing TRL files.  The tool is able to draw graph-based visual representations of process-nets and task-method relationships, and allows browsing through a point-and-click metaphor.  In addition to facilitating developers, this tool could also be useful to brigade staff trainees by showing rationale and explanations for recommended courses of action.

2.2  APTE AGENT ALGORITHM
The tasks and goals assigned to the agent are carried out by the APTE algorithm (Adaptive Protocol for Task Execution).  APTE can be thought of as a set of algorithms for operating on task-decomposition hierarchies (trees). Conceptually, there are two phases to APTE.  In the very first time step of the simulation, APTE takes the top-level tasks given to the agent and expands them downward by: 1) selecting appropriate methods for tasks, 2) instantiating the process networks for selected methods, 3) identifying sub-tasks that could be taken in the initial situation (nodes in the network without predecessors), and recursively expanding these sub-tasks further downward.  Once this tree is fully expanded, APTE collects the set of all viable concrete actions (operators) that could be taken as "first steps", selects one (possibly based on priority), and executes it.  In each subsequent time step, APTE must repair the task-decomposition tree.  This partly involves marking the action just taken and moving tokens forward in the corresponding process nets.  More importantly, APTE also re-checks each of the termination conditions associated with the tasks and methods in the tree.  If a termination condition has been reached (indicating failure), APTE backtracks and tries to find another method that would satisfy the parent task.  If a task at some level has successfully completed, then a step forward can be taken in the process net of its parent.

Much of the intelligence in the TaskableAgents Architecture comes from: 1) reasoning about how to select the most appropriate method for any given task, and 2) being able to react to significant changes in conditions and find alternative methods when necessary.  TRL is expressive enough to allow the specification of complex procedures for the agent to follow under nominal circumstances (reducing the cost of online plan construction), while the APTE algorithm enables flexible behavior in the form of reactivity to changes in conditions.  It is important to note that the conditions in tasks and methods are evaluated dynamically as needed.  For example, the preference conditions to select a method for a task are only evaluated at the time in the simulation when the task is invoked, not statically beforehand.  This focus on dynamically selecting and managing procedures places the TaskableAgents Architecture to the area of "plan execution and monitoring" [4][5], as opposed to typical AI planning systems which often rely on goal-regression to select sequences of actions prior to the execution of any single step that are expected to achieve a set of goals; in environments with high uncertainty, planning for contingencies is necessary but difficult.  

3. EXTENSION TO MULTI-AGENT SYSTEM

Extending the TaskableAgents Architecture to incorporate multiple agents working collectively as a team allows for a more realistic model of the individuals the agents are replacing.  A multi-agent system can be used in several ways in TOC simulations. First, an agent could play the role of each of the battalion staff members (S1, S2, S3, etc.). Secondly, agents could play adjacent battalions working under a single brigade. These agents must work together through the use of teamwork, proactively share information based on reasoning about each other’s roles, beliefs, and responsibilities, and collectively and effectively work towards the common team goals. Extending the TaskableAgents Architecture to allow agents to work together in a team requires several extensions. First and most important is a method of communication between agents.  Communication can be implemented quite easily within TRL.  Second, the ability to perform belief reasoning about other agents is needed. These two features added to the TaskableAgents Architecture allow for multiple agents to work together as a team to accomplish collective goals. 

Communication can be broken down into three levels of complexity. The lowest level consists of primitive communication methods. Communication methods are the low-level implementations of the simple communication acts. These work in a similar fashion to those protocols described within the networking domain [6]. These methods include such things as Broadcast-and-Wait, Broadcast-and-Do-No-Wait, and Broadcast-With-a–Time-Limit. These can also be implemented for Multicast and Unicast alternatives. Communication methods are the ways in which agents can physically speak with each other. The second level is the simple communication acts (or performatives). There can exist many different alternatives of these basic acts, but they are based on three basic categories: 1) Inform, 2) Request, and 3) Query.  KQML defines an extensive list of these performatives [7][8].  These second-level acts can all be built from the low-level communication methods. The level-two acts are a higher abstraction of the level-one acts, and define the various ways in which individuals can interact with each other. The third level consists of the more complex forms of communication. These include such things as synchronization, coordination, and cooperation. These complex communicative protocols require multiple level-two acts and require many interactions among several different team members. 

Communication between individuals can be incorporated into the TaskableAgents Architecture with the simple extension of Message Queues (a Java class we implemented using RMI, Remote Method Invocation). Message Queues allow for communication between individuals through the use of string-based messages that identify the sender, receiver, a time stamp, and the piece of information. Messages can follow the KQML format and can include such things as ASK, TELL, etc. Messages are sent by agents through calling a simple SEND operator (implemented in RMI) that will locate the recipient agent and place the message in its queue. Agents empty their queues into their knowledge bases during every cycle and can then process the messages using methods. Incorporated into the agent’s TRL is a task and a method for handling communication from others (as seen below). It is run in parallel with the other tasks that actually perform the work of the agent. Different messages require different actions and this can be incorporated through the use of conditions. For example, a simple method for receiving a message requires that an agent assert a new fact into its knowledge base. This can be seen in the following example:

(:Method M-Receive ( )     
 (:Process 

   (:while (:cond (TRUE))
     (:if (:cond (message ?count ?sender ?time 

                                  (tell ?what)))

       (:seq

        (ASSERT ?what)

        (RETRACT (message ?count ?sender ?time 

                    (tell ?what))))))))

After asserting the fact, the message is deleted to prevent it from being handled again in future states. More complex actions can also be incorporated. For example, if a command is received, then the agent might forward the message on to other agents and then send orders to its subordinates to perform a defined action. Thus, communication can be incorporated into the TaskableAgents Architecture allowing it to be extended into a multi-agent environment.  

4. DESIGN OF FUNCTION-SPECIFIC INTERFACES FOR THE STAFF TRAINEES

In order to produce a distributed training environment that will be beneficial to real human trainees, we developed a graphical version of various brigade-level forms that could be filled out and transmitted (or received).  In our scenario, the agent plays the role of the battalion-level battle-staff officers located in the task force main command post TOC.  The enemy units are simulated by OTB, which has been loaded with the scenario and opposing forces to allow for two-sided conflict.  Various brigade training interfaces (S1, S2, S3, FSO, etc) are distributed over several machines. Each interface contains numerous reports representing the various communication activities that happen between brigade and battalion. Such acts include SALT (Size Action Location Time) reports that describe an initial encounter or spotting of an enemy, RFS (Request For Support) to request help from another unit, Orders, and various other forms.  Figure 1 illustrates the entry of a SALT report.  The report comes from a brigade recon team (filled out by humans and sent to battalion S2 agent) and indicates newly discovered enemy positions.  Several rules fire in response to this new information, including making inferences about nearby friendly units and level of threat.  
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Figure 1. SALT report screen shot

This set of actions is invoked by a task hierarchy described in TRL.  The agent dynamically builds and repairs its “process network”, which is its internal TRL representation of what is going on. Task T_Handle_SALT will get expanded if and when such a report is received.  The first response by the agent is to inform the scouts and order them to proceed to the nearest observation post in order to monitor and keep track of the new enemy units.  It begins by sending a situation report to the scouts letting them know what is going on.  This action is performed by operator O_SEND_INTSUMREP (a low level communication operator) that identifies the new enemy position.  After all of the actions in response to the SALT have been completed, the task hierarchy is cleaned up, and the agent goes back into a mode of waiting for another SALT report. 

In addition to these forms, the interfaces also have other components that would be useful to brigade trainees.  We specialize some windows for each staff position to keep track of unique information they will be working with (e.g. target priority grid for FSO). Furthermore, to simulate the real environment for trainees in a battle, we developed another graphical interface, Distributed Map System (DMS, Figure 2) that is able to visualize information on maps (with icons) dynamically according to the changing of information. In this system, there is a single server to collect and update information about the battlefield (i.e., entity state packets broadcast by OTB on a DIS network) and translate it into military symbology. And for all clients, there is a list to maintain information displayed on screens and to keep updates from the server.  When the information is updated in the server, the displays on clients are changed synchronously and automatically. 
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Figure 2. DMS screen shot

DMS is driven by a central server that receives information regarding the entities and their movements. The server propagates this information to each registered client for synchronization purposes. Each client maintains a list of the entities and updates its display accordingly. It provides an API to get source information from other parts of the DBST through various accessor functions: type of entity, location of entity, speed, direction, etc.  DMS is written in Java and relies on RMI to facilitate distributed communication. Four parts comprise the system: 1). Object hierarchy: represents each entity depicted by the Map display and provides a mechanism to draw its representation on the screen. 2). Synchronization: the algorithm used to properly synchronize the server and client entity information. 3). Symbol rendering: the objects used to draw an entity symbol on the screen. 4). Client/Server: the server receives info regarding entities; clients maintain a mapping list of entities and use it to draw the Map display.

5. APPLICATION TO MOVEMENT-TO-CONTACT MISSIONS

To evaluate the capabilities of our TaskableAgents Architecture simulation approach, we have developed a knowledge base specific for movement-to-contact (MTC) scenarios.  MTC has several salient features that make it especially appropriate for our experiments.  First, we focused on maneuver because it involves interesting control and coordination issues and develops progressively over time. And second, MTC also involves a large amount of information gathering and exchange, requiring communication between brigade and battalion. 

We have implemented a prototype version of the battle staff training system based on the TaskableAgents Architecture in Java.  We carefully examined several Army field manuals (e.g. FM 101-5 [9]) to get information on the operations and procedures of TOC staff officers.  A central reference management system was implemented to track the University XXI knowledge acquisition effort.  The system was designed to centrally gather and catalog the references for our use. The knowledge acquisition methodology we adopted is the PARI (Precursor, Action, Result, and Interpretation) methodology [10], which is a cognitive task analysis technique developed by the Air Force Human Resources Laboratory. The knowledge acquired in the PARI interview process with a subject matter expert (a retired military commander) was recorded using a combination of flow diagrams, text, and tree structures. We have explored the range of behaviors that can be produced by our system on various hypothetical tactical situations on the terrain in the Ft. Hood military base.  We have obtained a terrain database that can be loaded into OTB.  We also pre-load our agent knowledge bases with routes for battalions and companies, observation posts (OPs), targeted areas of interest (TAIs), etc., derived from operation orders (OPORDs).  Our system is able to automatically monitor network traffic and extract information about entity states and positions from DIS PDUs.  The agent itself makes use of two resources.  First all of the knowledge encoded in TRL is read in from a text file and “parsed” into Java objects representing each task and method definition.  As the simulation runs, tasks and methods with specific input values get instantiated, and these spawns “live” versions of these objects, which get linked into the task-decomposition tree by the agent.  Finally, the agent also requires a mechanism for reasoning about the battlefield domain.  For this, we use JARE.

Our ultimate goal is to use these agent-based simulations to support the training of brigade TOC staff members.  This requires both the extension of our TRL knowledge base to handle a broader range of operations beyond MTC, and also to enhance the brigade interface to provide additional interactions and communications with their battalions and other units. 

6. CONCLUSION

In this paper, we have presented the TaskableAgents Architecture underlying our work on the University XXI project.  The objective was to provide more realistic behavior and interactions of aggregate-level units in combat simulations. We are particularly interested in simulating the behavior of the TOC (at battalion level) that involves a great deal of interaction and information-exchange. We also wanted to simulate the more complex decision-making of such units, where they must follow orders under nominal conditions, yet react appropriately to unexpected situations as they arise.  To accomplish this goal, we developed a knowledge representation language called TRL for capturing typical procedures that staff officers go through to carry out their various functions.  Then we developed the APTE algorithm for an agent to use knowledge in TRL. In addition, to initially expand tasks into suitable methods (which may have sub-tasks, producing a hierarchical decomposition), the APTE algorithm also handles circumstances where a given task, method, or operator can’t be continued due to failure of some essential condition.  In this case, the APTE algorithm adaptively repairs the task hierarchy by finding alternative methods for accomplishing the required tasks or sub-goals.   We also developed various communication protocols in TRL to enable teamwork among the agents.

This general approach could be used to simulate the intelligent behaviors of a wide variety of units in military simulations, as well as non-military applications such as training firefighters and emergency response teams.  Within our University XXI project, much additional work remains.  In the future, we plan to simulate higher-level decision-making, especially command and control (C2), which should facilitate more reactive behavior that is also more general.  This requires trying to uncover the enemy’s intent.  A step in this direction would be to try to implement a version of naturalistic decision-making [11], which involves cognitive models for uncertainty management, intelligence gathering, and situation assessment. 
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