Verbs and Adverbs:
Multidimensional Motion Interpolation
Using Radial Basis

Charles Rose Boby Bodenheimer Michael Cohen
Microsoft Research

Presented by WSHong
Goal

1. Construction of new motions with the interpolation
 a. Real time + Radial basis function

2. Verbs and Adverb
 a. Verbs: The parameterized motions
 b. Adverb: The parameter controlling verbs

3. Verb graphs
 a. Transition from verb to verb
 b. Runtime data structure
 c. The repertoire of expressive behaviors
Overview

- Emotional expression
 - Control behaviors

- Verbs
 - Characterized
 - Interpolation
 - Interpolation
 - Combined
 - Smooth transition

- Adverbs
 - Control

- Example Motions
 - Interpolation

- Verb graph

- IK
 - Radial basis functions
 - Low order polynomials

- Other verbs

Repertoire of expressive behaviors
Related Work

1. Unuma et al.
 • Fourier techniques with interpolation.
2. Amaya et al.
 • Emotion transform
3. Bruderlin and Williams
 • Blending motions, multitarget interpolation
4. Witkin and Popovic
 • Motion warping
5. Wiley and Hahn
 • Linear interpolation, blending motion
6. Hodgins and Pollard
 • Interpolation over the space of control
Verbs and Adverbs

The system:

• Offline authoring system
 – Define verb
 – Construct transitions
 – Verb graph
• Runtime system
 – Invocation of verbs
 – Evaluating figure’s pose
Verbs and Adverbs (Cont.)

- A verb \(M \)

\[
M_i = \{ \theta_{ij}(T), \mathbf{p}_i, K_m : i = 1 \ldots \text{NumExamples}, j = 1 \ldots \text{NumDOF}, m = 0 \ldots \text{NumKeyTimes} \}
\]

\(\mathbf{p}_i \): location in adverb space \(K_m \): Keytimes \(\theta \): DOF function

The restrictions of example motions:

- All examples for a verb are structurally similar:
 - Same starting foot, same step numbers, same arm swing phases & no spurious motions.
- Joint angle consistency
Verbs and Adverbs (Cont.)

- Example motions:

\[\theta_{ij}(T) = \sum_{k=1}^{\text{NumCP}} b_{ijk} B_k(T) \]

- \(b_{ijk} \): scalar B-spline coefficients or control points
- \(B_k(T) \): B-splines
Verbs and Adverbs (Cont.)

Time warping:
Mapping keytimes T to generic time t

\[
t(T) = \left(m - 1 + \frac{T - K_m}{K_{m+1} - K_m} \right) \frac{1}{\text{NumKeyTimes} - 1}
\]

\[
t(K_m) = \frac{m - 1}{\text{NumKeyTimes} - 1}
\]
Inverse kinematics constraints:

- Keytimes also specify constraint periods
 - Heel-strike & toe-off in keytimes
- Use IK to enforce constraints at runtime

\[J \Delta \theta = \Delta x \]

\(J \): Jacobian
Verbs construction

- Verb space:
 Examples with keytimes and adverb settings
- NumAdverbs:
 The dimension of the space

Standard problem of interpolation:
 Higher dimension and/or few examples cause interpolation difficulties
Verbs construction (Cont.)

- Solution:
 Radial basis function + linear approximation

\[b_{jk}(\mathbf{p}) = \sum_{i=1}^{\text{NumExamples}} r_{ijk} R_i(\mathbf{p}) + \sum_{l=0}^{\text{NumAdverbs}} a_{jkl} A_l(\mathbf{p}) \]

\[K_m(\mathbf{p}) = \sum_{i=1}^{\text{NumExamples}} r_{im} R_i(\mathbf{p}) + \sum_{l=0}^{\text{NumAdverbs}} a_{lm} A_l(\mathbf{p}) \]
Verbs Graph

- Combine verbs nodes with smooth transitions
- Duration of the transition: average

\[
\frac{(T(t_{c}^{A}) - T(t_{s}^{A})) + (T(t_{c}^{B}) - T(t_{s}^{B}))}{2}
\]
Verbs Graph (Cont.)

- Blending during correspondence region
Runtime Verb Evaluation

Evaluating DOF

1 $T = \tau - \tau_{offset}$
2
3 For each keytime m
4 $K_m = \text{InterKey}(m, p)$ // Eqn. 4
5 Next
6
7 $t = \text{GenericTime}(T, K)$ // Eqn. 1
8
9 For each DOF j
10 For each B-spline coefficient k
11 $b_{jk} = \text{InterBSCoeff}(j, k, p)$ // Eqn. 3
12 Next
13 $q_t = \mathbf{A}_k b_{jk} \mathbf{B}_k(t)$
14 Next
15 For each kinematic constraint c
16 $\text{EnforceConstraint}(c)$ // Eqn. 2
17 Next
Results

Reach high

Reach low

Reach right Reach left
Conclusion

• Advantages
 – Build new motions from few examples motions
 – Able to compute them at runtime
 – The repertoire of expressive behaviors using verb graph

• Drawbacks
 – RBF introduce noise
 – The animator has to determine key times
Q & A
Thank you!