An Introduction to the AKS Primality Test

Andreas Klappenecker

September 4, 2002

A prime p is a positive integer which is divisible by exactly two positive integers, namely by 1 and p. An integer $n>1$ is called composite if it is not a prime. A fundamental question is:

$$
\text { How can we tell whether an integer } n>1 \text { is prime or not? }
$$

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena from IIT Kanpur proposed a new algorithmic solution to this question in August 2002 [1]. Unlike previous solutions, their algorithm produces the correct answer in polynomial time. The purpose of these lecture notes is to give a short overview of this primality test, and to provide a guide to the related literature.

```
Algorithm 1 (Agrawal, Kayal, Saxena)
Input: An integer \(n>1\).
    : if \(n\) is a power then output composite \(\mathbf{f i}\);
    \(r:=2\);
    while \((r<n)\) do
        if \(\operatorname{gcd}(r, n) \neq 1\) then output composite fi;
        if \(r\) is prime then
            \(q:=\) largest prime factor of \(r-1\);
            if \((q \geq 4 \sqrt{r} \log n)\) and \(\left(n^{(r-1) / q} \not \equiv 1 \bmod r\right)\) then break \(\mathbf{f i}\);
        fi;
        \(r:=r+1 ;\)
    od;
    for \(a=1\) to \(2 \sqrt{r} \log n\) do
        if \((x-a)^{n} \not \equiv\left(x^{n}-a\right) \bmod \left(x^{r}-1, n\right)\) then output composite \(\mathbf{f}\);
    od;
    output prime;
```

Overview. Algorithm 1 can be divided into three parts.
S_{1}. The first step, line 0 , determines whether the number n is of the form $n=m^{d}$, for some positive integers m and d, with $d>1$. This amounts to check whether $\left\lfloor n^{1 / k}\right\rfloor^{k}=n$ for some k in the range $2 \leq k \leq \log n$.
S_{2}. The second step, lines 1-9, determines whether n has a small prime divisor. The while loop is executed until a small prime $r \in O\left(\log ^{6} n\right)$ is found such that $r-1$ has a large prime divisor q, which divides the multiplicative order of n modulo r.
S_{3}. The last step checks whether the relation $(x-a)^{n} \equiv x^{n}-a$ modulo ($x^{r}-1, n$) holds for various a 's. This step is the crucial part of this method. Unfortunately, it is also the most time consuming one.

The last step is motivated by the following observation.
Lemma 1 Let a, n be some positive integers such that $\operatorname{gcd}(a, n)=1$, then n is a prime if and only if the relation $(x-a)^{n} \equiv x^{n}-a \bmod n$ holds.

Proof. Suppose that n is a prime. Recall that $(x-a)^{n}=\sum_{i=0}^{n}\binom{n}{i}(-a)^{n-i} x^{i}$. For $0<i<n,\binom{n}{i} \equiv 0 \bmod n$, since n is a prime. The coefficient of x^{n} is $\binom{n}{n}(-a)^{0}=1$. Notice that $(-a)^{n-1} \equiv 1 \bmod n$ by Fermat's little theorem, whence the coefficient of x^{0} is $\binom{n}{0}(-a)^{n} \equiv-a \bmod n$. It follows that $(x-a)^{n} \equiv x^{n}-a \bmod n$.

Suppose now that n is composite. Let p be a prime dividing n, and $n=p^{k} m$ with $\operatorname{gcd}(p, m)=1$. Repeatedly applying the known identity $\binom{c}{d} \equiv$ $\binom{\lfloor c / p\rfloor p}{[d / p\rfloor}\binom{ c \bmod p}{d \bmod p} \bmod p$ yields $\binom{n}{p^{k}} \equiv\binom{m}{1} \equiv m \not \equiv 0 \bmod p$, thus $\binom{n}{p^{k}} \not \equiv 0 \bmod$ n. Since $\operatorname{gcd}(a, n) \neq 1,(-a)^{n-p^{k}} \not \equiv 0 \bmod n$. Thus, the coefficient of $x^{p^{k}}$ is nonzero $\bmod n$. It follows that $(x-a)^{n} \not \equiv x^{n}-a \bmod n$ for composite n.

Checking $(x-a)^{n} \equiv x^{n}-a \bmod n$ would be too time consuming. Therefore, the third step rather checks whether $(x-a)^{n} \equiv x^{n}-a \bmod \left(x^{r}-1, n\right)$ holds. This is of course more efficient, since the polynomials are then of degree less than the small prime r.

We have to pay a price for this gain in efficiency. For composite n, it might now happen that $(x-a)^{n} \equiv x^{n}-a \bmod \left(x^{r}-1, n\right)$ holds, although $(x-a)^{n} \not \equiv x^{n}-a \bmod n$. However, checking sufficiently many distinct a 's allows to rule out such anomalities. The choice of the prime r guarantees that we can find a suitable a in the range $1 \leq a \leq 2 \sqrt{r} \log n$.

Correctness. We proceed to show that the algorithm is correct. If the input is prime, then it follows from our preceding discussion that the output of Algorithm 1 is prime. The difficulty rests in showing that a composite number n cannot pass through the tests in steps S_{1}, S_{2}, and S_{3} without producing the desired output composite.

Assume that an input n has passed the tests in the steps S_{1}, S_{2}, and S_{3}. In other words, the algorithm did not report that the number is composite. If the break statement is never executed, then $\operatorname{gcd}(r, n)=1$ for all r in the range $2 \leq r<n$, which means that n is a prime.

Therefore, we may assume that the while loop terminated early by the break statement in line 6. This means that the algorithm found a prime r such that the largest prime factor q of $r-1$ satisfies $q \geq 2 s$, with $s=2\lfloor\sqrt{r}\rfloor \log n$. We have $n^{(r-1) / q} \not \equiv 1 \bmod r$ as a consequence of the test in line 6 . Since $\operatorname{gcd}(r, n)=1$, we also have $n^{(r-1) / q} \not \equiv 0 \bmod r$. Notice that n does not have any prime factors of size smaller than $r \geq q \geq s$, since such factors would have been detected by the test in line 3. Finally, we observe that passing step S_{3} means that the input n fails all s tests in the for loop in lines 10-12. In other words, the number n satisfies $(x-a)^{n} \equiv\left(x^{n}-a\right) \bmod \left(x^{r}-1, n\right)$ for all a in the range $1 \leq a \leq s$.

The particular choice of $s=2\lfloor\sqrt{r}\rfloor \log n$ as an upper bound on the for loop and $q \geq 2 s$ implies that equation (1) in the following theorem is satisfied, since $\binom{q+s-1}{s}>\left(\frac{q}{s}\right)^{s} \geq 2^{s}$, and the choice of s implies $2^{s}=n^{2\lfloor\sqrt{r}\rfloor}$. Thus, all hypotheses of the following theorem are satisfied.
Theorem A. Let n, s be positive integers, $n>1$. Assume that n is not a power. Let r be a prime and denote by q the largest prime factor of $r-1$. Suppose that n does not have a prime factor less than or equal to s, that

$$
\begin{equation*}
\binom{q+s-1}{s}>n^{2\lfloor\sqrt{r}\rfloor} \tag{1}
\end{equation*}
$$

that $n^{(r-1) / q} \bmod r \notin\{0,1\}$, and that $(x-a)^{n} \equiv x^{n}-a \bmod \left(x^{r}-1, n\right)$ for all $1 \leq a \leq s$. Then n has to be a prime.

Remark. It should be noted that a suitable prime r will be found with certainty. In fact, the while loop will be iterated at most $r \in O\left(\log ^{6} n\right)$ times. We will discuss complexity issues later.

Proof of Theorem A. Let p denote a prime factor of n satisfying the condition $p^{(r-1) / q} \bmod r \notin\{0,1\}$. Such a prime has to exists, for otherwise
all prime factors p of n would satisfy $p^{(r-1) / q} \bmod r \in\{0,1\}$, therefore $n-$ as a product of these primes - would have to satisfy $n^{(r-1) / q} \bmod r \in\{0,1\}$, contradicting the hypothesis of the theorem.

The ring $R=(\mathbf{Z} / n \mathbf{Z})[x] /\left(x^{r}-1\right)$ is well-suited for algorithmic purposes, but for the analysis is will be simpler to use a finite field. Let $K=\mathbf{F}_{p}[x] /(h(x))$, where $h(x)$ denotes an irreducible factor of $\left(x^{r}-1\right) /(x-1)$. The finite field K is a homomorphic image of R. This coarser picture will be enough, since the constraints on q ensure that this field is not too small:

Lemma 2 Let $h(x) \in \mathbf{F}_{p}[x]$ be an irreducible factor of $\left(x^{r}-1\right) /(x-1)$. Then $\operatorname{deg} h(x) \geq q$.

Proof. Recall that the multiplicative order e of $p \bmod r$ is the smallest exponent e such that $p^{e} \equiv 1 \bmod r$. Notice that q must divide e. Fermat's little theorem shows that $p^{r-1} \equiv 1 \bmod r$. Hence $r-1=e b$ for some integer b. By definition, q divides $r-1$. If q does not divide e, then q has to divide b, which yields $p^{(r-1) / q} \equiv p^{e(b / q)} \equiv 1 \bmod p$, contradicting our choice of p. Therefore, q divides e, hence $e \geq q$. It is shown in Theorem 2.47 of [5] that the degree of an irreducible factor $h(x)$ of the cyclotomic polynomial $\left(x^{r}-1\right) /(x-1)$ coincides with multiplicative order e of $p \bmod r$. \square

Let $f_{a}(x)$ denote the polynomial $x-a$. It follows from our assumptions that $f_{a}\left(x^{n}\right) \equiv f_{a}(x)^{n} \bmod \left(x^{r}-1, p\right)$ for all a in the range $1 \leq a \leq s$. In addition, we have $f_{a}\left(x^{p}\right) \equiv f_{a}(x)^{p} \bmod p$, since $\operatorname{gcd}(a, p)=1$. As a consequence, we obtain similar power laws for products of these polynomials. We form the group generated by the polynomials $f_{a}(x)$. This data structure will allow to assemble the information obtained about the individual polynomials.

Lemma 3 Let G be the subgroup of the multiplicative group K^{*} generated by the elements $(x-a)$ with $1 \leq a \leq s$. Then G is a cyclic group which is at least of order $\binom{s+q-1}{s}$.

Proof. Since K^{*} is a cyclic group, G must be cyclic as well. Let a, b be distinct integers in the range $1 \leq a, b \leq s$. It cannot happen that the elements $(x-a)$ and $(x-b)$ are equal in K, because this would imply that p is a small prime dividing $|a-b| \leq s$, and n does not have any prime factors $p \leq s$ by assumption. The group G contains at least $\binom{q+s-1}{s}$ elements, since the elements $\prod_{i=1}^{s}(x-i)^{e_{i}}$ satisfying $e_{1}+e_{2}+\cdots+e_{s} \leq q-1<\operatorname{deg} h(x)$ are pairwise distinct.

Lemma 4 Let $g(x)$ be a generator of the cyclic group G. The set of exponents $\mathcal{E}=\left\{e \in \mathbf{Z} \mid e \geq 1, g\left(x^{e}\right) \equiv g(x)^{e} \bmod \left(x^{r}-1, p\right)\right\}$ is closed under multiplication.

Proof. Let $e, d \in \mathcal{E}$. Thus, $g\left(x^{e}\right) \equiv g(x)^{e} \bmod \left(x^{r}-1, p\right)$. Substituting x^{d} for x yields $g\left(x^{e d}\right) \equiv g\left(x^{d}\right)^{e} \bmod \left(x^{d r}-1, p\right)$. Since $x^{r}-1$ divides $x^{r d}-1$, we obtain in particular $g\left(x^{d e}\right) \equiv g\left(x^{d}\right)^{e} \bmod \left(x^{r}-1, p\right)$. Therefore, we can derive $g(x)^{d e} \equiv\left(g(x)^{d}\right)^{e} \equiv g\left(x^{d}\right)^{e} \equiv g\left(x^{d e}\right) \bmod \left(x^{r}-1, p\right)$. Thus, $e d \in \mathcal{E}$.

Lemma 5 We have $n, p \in \mathcal{E}$, hence $n^{i} p^{j} \in \mathcal{E}$.
Proof. The generator $g(x)$ is of the form $\prod_{i=1}^{s}(x-i)^{e_{i}}$. Therefore,

$$
g(x)^{n} \equiv \prod_{i=1}^{s}(x-i)^{n e_{i}} \equiv \prod_{i=1}^{s}\left(x^{n}-i\right)^{e_{i}} \equiv g\left(x^{n}\right) \bmod \left(x^{r}-1, n\right)
$$

thus this holds in particular modulo $\left(x^{r}-1, p\right)$. The relation $g\left(x^{p}\right) \equiv$ $g(x)^{p} \bmod p$ holds for any product of the polynomials $(x-a)$. Therefore, $p, n \in \mathcal{E}$.

We can now conclude the proof of Theorem A. Consider the products $n^{i} p^{j}$ with $0 \leq i, j \leq\lfloor\sqrt{r}\rfloor$. There are $(1+\lfloor\sqrt{r}\rfloor)^{2}>r$ such numbers. Thus, by the pigeonhole principle, we must have distinct (i, j) and (k, ℓ) such that $n^{i} p^{j} \equiv n^{k} p^{\ell} \bmod r$. Let $u=n^{i} p^{j}$ and $t=n^{k} p^{\ell}$. By construction, $g\left(x^{u}\right) \equiv g\left(x^{t}\right) \bmod \left(x^{r}-1, p\right)$, hence $g(x)^{u} \equiv g(x)^{t} \bmod \left(x^{r}-1, p\right)$. It follows that $g(x)^{t}=g(x)^{u}$ in the field K. This means that $t \equiv u \bmod |G|$. However, $n^{2\lfloor\sqrt{r}\rfloor}<\binom{q+s-1}{s} \leq|G|$. Therefore, t and u must be equal, hence $n^{i-k}=p^{j-\ell}$. It is not possible that i equals k, since this would force $j=\ell$. Therefore, n is of the form $n=p^{m}$. Since n is not a power, we must have $m=1$, hence p is a prime. This concludes the proof of Theorem A.

Complexity. We give a rough complexity estimate to show that the runtime of Algorithm 1 is bounded by polynomial in the number of digits of n. The existence of a suitable small prime r is a consequence of results from analytic number theory:

Lemma 6 There exist two real constants c_{1}, c_{2} such that there is a prime r in the range $c_{1}(\log n)^{6} \leq r \leq c_{2}(\log n)^{6}$, which satisfies the following property: $r-1$ has a prime factor $q \geq 4\lfloor\sqrt{r}\rfloor \log n$ and q divides the multiplicative order of $n \bmod r$.

This lemma is a consequence of a result by Fouvry [4], see Lemma 4.2 in [1] for a proof.

Proposition 7 The runtime of Algorithm 1 is polynomial in the number of digits of n.

Proof. The runtime is determined by the third step, since this is the most time consuming part of Algorithm 1. Calculating $(x-a)^{n} \bmod \left(x^{r}-1, n\right)$ with a square-and-multiply method requires $O(\log n)$ multiplications of polynomials of degree less than r, with coefficients in $\mathbf{Z} / n \mathbf{Z}$. The multiplication of two such polynomials requires $O\left(r^{2}\right)$ operations in the $\operatorname{ring} \mathbf{Z} / n \mathbf{Z}$. Therefore, the for loop requires $O\left(2 \sqrt{r} \log n \cdot r^{2} \log n\right)$ ring operations. A classical multiplication in $\mathbf{Z} / n \mathbf{Z}$ requires $O\left((\log n)^{2}\right)$ additions. Assuming $r \in O\left((\log n)^{6}\right)$, we get a total complexity estimate of $O\left((\log n)^{19}\right)$.

Notes. We followed in our exposition the seminal paper [1], taking advantage of the expositions given by Bernstein [2], and Morain [6]. All three papers are highly recommended for further study. The book by Crandall and Pomerance [3] is an excellent source for known primality tests.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Preprint, IIT Kanpur, August 2002.
[2] D. Bernstein. An exposition of the Agrawal-Kayal-Saxena primality-proving theorem. Preprint, University of Illinois at Chicago, August 2002.
[3] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective. Springer Verlag, New York, 2001.
[4] E. Fouvry. Theoreme de Brun-Titchmarche; application au theoreme de Fermant. Invent. Math., 79:383-407, 1985.
[5] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 2nd edition, 1997.
[6] F. Morain. Primalité théorique et primalité pratique ou AKS vs. ECPP. Preprint, Laboratoire d'Informatique de l'École Polytechnique, August 2002.
Department of Computer Science, Texas A\&M University, College Station, TX 77843-3112, klappi@cs.tamu.edu

