An Introduction to the AKS Primality Test

Andreas Klappenecker

September 4, 2002

A prime p is a positive integer which is divisible by exactly two positive integers, namely by 1 and p. An integer n > 1 is called composite if it is not a prime. A fundamental question is:

How can we tell whether an integer n > 1 is prime or not?

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena from IIT Kanpur proposed a new algorithmic solution to this question in August 2002 [1]. Unlike previous solutions, their algorithm produces the correct answer in polynomial time. The purpose of these lecture notes is to give a short overview of this primality test, and to provide a guide to the related literature.

Algorithm 1 (Agrawal, Kayal, Saxena)

```
Input: An integer n > 1.
 0: if n is a power then output composite fi;
 1: r := 2;
 2: while (r < n) do
      if gcd(r, n) \neq 1 then output composite fi;
 3:
      if r is prime then
 4:
         q := largest prime factor of r - 1;
 5:
         if (q \ge 4\sqrt{r} \log n) and (n^{(r-1)/q} \not\equiv 1 \mod r) then break fi;
 6:
 7:
      fi:
      r := r + 1;
 8:
 9: od;
10: for a = 1 to 2\sqrt{r} \log n do
      if (x-a)^n \not\equiv (x^n-a) \mod (x^r-1,n) then output composite fi;
11:
12: od:
13: output prime;
```

Overview. Algorithm 1 can be divided into three parts.

- S_1 . The first step, line 0, determines whether the number n is of the form $n = m^d$, for some positive integers m and d, with d > 1. This amounts to check whether $\lfloor n^{1/k} \rfloor^k = n$ for some k in the range $2 \le k \le \log n$.
- S_2 . The second step, *lines 1-9*, determines whether *n* has a small prime divisor. The while loop is executed until a small prime $r \in O(\log^6 n)$ is found such that r 1 has a large prime divisor *q*, which divides the multiplicative order of *n* modulo *r*.
- S_3 . The last step checks whether the relation $(x a)^n \equiv x^n a$ modulo $(x^r 1, n)$ holds for various *a*'s. This step is the crucial part of this method. Unfortunately, it is also the most time consuming one.

The last step is motivated by the following observation.

Lemma 1 Let a, n be some positive integers such that gcd(a, n) = 1, then n is a prime if and only if the relation $(x - a)^n \equiv x^n - a \mod n$ holds.

Proof. Suppose that n is a prime. Recall that $(x-a)^n = \sum_{i=0}^n \binom{n}{i} (-a)^{n-i} x^i$. For 0 < i < n, $\binom{n}{i} \equiv 0 \mod n$, since n is a prime. The coefficient of x^n is $\binom{n}{n}(-a)^0 = 1$. Notice that $(-a)^{n-1} \equiv 1 \mod n$ by Fermat's little theorem, whence the coefficient of x^0 is $\binom{n}{0}(-a)^n \equiv -a \mod n$. It follows that $(x-a)^n \equiv x^n - a \mod n$.

Suppose now that *n* is composite. Let *p* be a prime dividing *n*, and $n = p^k m$ with gcd(p, m) = 1. Repeatedly applying the known identity $\binom{c}{d} \equiv \binom{\lfloor c/p \rfloor}{\lfloor d/p \rfloor} \binom{c \mod p}{d \mod p} \mod p$ yields $\binom{n}{p^k} \equiv \binom{m}{1} \equiv m \not\equiv 0 \mod p$, thus $\binom{n}{p^k} \not\equiv 0 \mod n$. Since $gcd(a, n) \neq 1$, $(-a)^{n-p^k} \not\equiv 0 \mod n$. Thus, the coefficient of x^{p^k} is nonzero mod *n*. It follows that $(x - a)^n \not\equiv x^n - a \mod n$ for composite *n*. \Box

Checking $(x-a)^n \equiv x^n - a \mod n$ would be too time consuming. Therefore, the third step rather checks whether $(x-a)^n \equiv x^n - a \mod (x^r - 1, n)$ holds. This is of course more efficient, since the polynomials are then of degree less than the small prime r.

We have to pay a price for this gain in efficiency. For composite n, it might now happen that $(x - a)^n \equiv x^n - a \mod (x^r - 1, n)$ holds, although $(x - a)^n \not\equiv x^n - a \mod n$. However, checking sufficiently many distinct a's allows to rule out such anomalities. The choice of the prime r guarantees that we can find a suitable a in the range $1 \le a \le 2\sqrt{r} \log n$.

Correctness. We proceed to show that the algorithm is correct. If the input is prime, then it follows from our preceding discussion that the output of Algorithm 1 is **prime**. The difficulty rests in showing that a composite number n cannot pass through the tests in steps S_1, S_2 , and S_3 without producing the desired output composite.

Assume that an input n has passed the tests in the steps S_1 , S_2 , and S_3 . In other words, the algorithm did not report that the number is composite. If the break statement is never executed, then gcd(r, n) = 1 for all r in the range $2 \le r < n$, which means that n is a prime.

Therefore, we may assume that the while loop terminated early by the break statement in line 6. This means that the algorithm found a prime r such that the largest prime factor q of r-1 satisfies $q \ge 2s$, with $s = 2\lfloor\sqrt{r}\rfloor \log n$. We have $n^{(r-1)/q} \not\equiv 1 \mod r$ as a consequence of the test in line 6. Since $\gcd(r, n) = 1$, we also have $n^{(r-1)/q} \not\equiv 0 \mod r$. Notice that n does not have any prime factors of size smaller than $r \ge q \ge s$, since such factors would have been detected by the test in line 3. Finally, we observe that passing step S_3 means that the input n fails all s tests in the for loop in lines 10-12. In other words, the number n satisfies $(x-a)^n \equiv (x^n-a) \mod (x^r-1,n)$ for all a in the range $1 \le a \le s$.

The particular choice of $s = 2\lfloor\sqrt{r}\rfloor \log n$ as an upper bound on the for loop and $q \ge 2s$ implies that equation (1) in the following theorem is satisfied, since $\binom{q+s-1}{s} > \binom{q}{s}^s \ge 2^s$, and the choice of s implies $2^s = n^{2\lfloor\sqrt{r}\rfloor}$. Thus, all hypotheses of the following theorem are satisfied.

Theorem A. Let n, s be positive integers, n > 1. Assume that n is not a power. Let r be a prime and denote by q the largest prime factor of r - 1. Suppose that n does not have a prime factor less than or equal to s, that

$$\binom{q+s-1}{s} > n^{2\lfloor \sqrt{r} \rfloor},\tag{1}$$

that $n^{(r-1)/q} \mod r \notin \{0,1\}$, and that $(x-a)^n \equiv x^n - a \mod (x^r - 1, n)$ for all $1 \le a \le s$. Then n has to be a prime.

Remark. It should be noted that a suitable prime r will be found with certainty. In fact, the while loop will be iterated at most $r \in O(\log^6 n)$ times. We will discuss complexity issues later.

Proof of Theorem A. Let p denote a prime factor of n satisfying the condition $p^{(r-1)/q} \mod r \notin \{0,1\}$. Such a prime has to exists, for otherwise

all prime factors p of n would satisfy $p^{(r-1)/q} \mod r \in \{0, 1\}$, therefore n – as a product of these primes – would have to satisfy $n^{(r-1)/q} \mod r \in \{0, 1\}$, contradicting the hypothesis of the theorem.

The ring $R = (\mathbf{Z}/n\mathbf{Z})[x]/(x^r - 1)$ is well-suited for algorithmic purposes, but for the analysis is will be simpler to use a finite field. Let $K = \mathbf{F}_p[x]/(h(x))$, where h(x) denotes an irreducible factor of $(x^r-1)/(x-1)$. The finite field K is a homomorphic image of R. This coarser picture will be enough, since the constraints on q ensure that this field is not too small:

Lemma 2 Let $h(x) \in \mathbf{F}_p[x]$ be an irreducible factor of $(x^r - 1)/(x - 1)$. Then deg $h(x) \ge q$.

Proof. Recall that the multiplicative order e of $p \mod r$ is the smallest exponent e such that $p^e \equiv 1 \mod r$. Notice that q must divide e. Fermat's little theorem shows that $p^{r-1} \equiv 1 \mod r$. Hence r-1 = eb for some integer b. By definition, q divides r-1. If q does not divide e, then q has to divide b, which yields $p^{(r-1)/q} \equiv p^{e(b/q)} \equiv 1 \mod p$, contradicting our choice of p. Therefore, q divides e, hence $e \geq q$. It is shown in Theorem 2.47 of [5] that the degree of an irreducible factor h(x) of the cyclotomic polynomial $(x^r - 1)/(x - 1)$ coincides with multiplicative order e of $p \mod r$. \Box

Let $f_a(x)$ denote the polynomial x - a. It follows from our assumptions that $f_a(x^n) \equiv f_a(x)^n \mod (x^r - 1, p)$ for all a in the range $1 \leq a \leq s$. In addition, we have $f_a(x^p) \equiv f_a(x)^p \mod p$, since gcd(a, p) = 1. As a consequence, we obtain similar power laws for products of these polynomials. We form the group generated by the polynomials $f_a(x)$. This data structure will allow to assemble the information obtained about the individual polynomials.

Lemma 3 Let G be the subgroup of the multiplicative group K^* generated by the elements (x - a) with $1 \le a \le s$. Then G is a cyclic group which is at least of order $\binom{s+q-1}{s}$.

Proof. Since K^* is a cyclic group, G must be cyclic as well. Let a, b be distinct integers in the range $1 \leq a, b \leq s$. It cannot happen that the elements (x-a) and (x-b) are equal in K, because this would imply that p is a small prime dividing $|a-b| \leq s$, and n does not have any prime factors $p \leq s$ by assumption. The group G contains at least $\binom{q+s-1}{s}$ elements, since the elements $\prod_{i=1}^{s} (x-i)^{e_i}$ satisfying $e_1 + e_2 + \cdots + e_s \leq q - 1 < \deg h(x)$ are pairwise distinct. \Box

Lemma 4 Let g(x) be a generator of the cyclic group G. The set of exponents $\mathcal{E} = \{e \in \mathbb{Z} | e \geq 1, g(x^e) \equiv g(x)^e \mod (x^r - 1, p)\}$ is closed under multiplication.

Proof. Let $e, d \in \mathcal{E}$. Thus, $g(x^e) \equiv g(x)^e \mod (x^r - 1, p)$. Substituting x^d for x yields $g(x^{ed}) \equiv g(x^d)^e \mod (x^{dr} - 1, p)$. Since $x^r - 1$ divides $x^{rd} - 1$, we obtain in particular $g(x^{de}) \equiv g(x^d)^e \mod (x^r - 1, p)$. Therefore, we can derive $g(x)^{de} \equiv (g(x)^d)^e \equiv g(x^d)^e \equiv g(x^{de}) \mod (x^r - 1, p)$. Thus, $ed \in \mathcal{E}$. \Box

Lemma 5 We have $n, p \in \mathcal{E}$, hence $n^i p^j \in \mathcal{E}$.

Proof. The generator g(x) is of the form $\prod_{i=1}^{s} (x-i)^{e_i}$. Therefore,

$$g(x)^n \equiv \prod_{i=1}^s (x-i)^{ne_i} \equiv \prod_{i=1}^s (x^n-i)^{e_i} \equiv g(x^n) \mod (x^r-1,n),$$

thus this holds in particular modulo $(x^r - 1, p)$. The relation $g(x^p) \equiv g(x)^p \mod p$ holds for any product of the polynomials (x - a). Therefore, $p, n \in \mathcal{E}$. \Box

We can now conclude the proof of Theorem A. Consider the products $n^i p^j$ with $0 \leq i, j \leq \lfloor \sqrt{r} \rfloor$. There are $(1 + \lfloor \sqrt{r} \rfloor)^2 > r$ such numbers. Thus, by the pigeonhole principle, we must have distinct (i, j) and (k, ℓ) such that $n^i p^j \equiv n^k p^\ell \mod r$. Let $u = n^i p^j$ and $t = n^k p^\ell$. By construction, $g(x^u) \equiv g(x^t) \mod (x^r - 1, p)$, hence $g(x)^u \equiv g(x)^t \mod (x^r - 1, p)$. It follows that $g(x)^t = g(x)^u$ in the field K. This means that $t \equiv u \mod |G|$. However, $n^{2\lfloor\sqrt{r}\rfloor} < \binom{q+s-1}{s} \leq |G|$. Therefore, t and u must be equal, hence $n^{i-k} = p^{j-\ell}$. It is not possible that i equals k, since this would force $j = \ell$. Therefore, n is of the form $n = p^m$. Since n is not a power, we must have m = 1, hence p is a prime. This concludes the proof of Theorem A. \Box

Complexity. We give a rough complexity estimate to show that the runtime of Algorithm 1 is bounded by polynomial in the number of digits of n. The existence of a suitable small prime r is a consequence of results from analytic number theory:

Lemma 6 There exist two real constants c_1, c_2 such that there is a prime r in the range $c_1(\log n)^6 \leq r \leq c_2(\log n)^6$, which satisfies the following property: r-1 has a prime factor $q \geq 4\lfloor\sqrt{r}\rfloor \log n$ and q divides the multiplicative order of $n \mod r$.

This lemma is a consequence of a result by Fouvry [4], see Lemma 4.2 in [1] for a proof.

Proposition 7 The runtime of Algorithm 1 is polynomial in the number of digits of n.

Proof. The runtime is determined by the third step, since this is the most time consuming part of Algorithm 1. Calculating $(x - a)^n \mod (x^r - 1, n)$ with a square-and-multiply method requires $O(\log n)$ multiplications of polynomials of degree less than r, with coefficients in $\mathbf{Z}/n\mathbf{Z}$. The multiplication of two such polynomials requires $O(r^2)$ operations in the ring $\mathbf{Z}/n\mathbf{Z}$. Therefore, the for loop requires $O(2\sqrt{r}\log n \cdot r^2\log n)$ ring operations. A classical multiplication in $\mathbf{Z}/n\mathbf{Z}$ requires $O((\log n)^2)$ additions. Assuming $r \in O((\log n)^6)$, we get a total complexity estimate of $O((\log n)^{19})$. \Box

Notes. We followed in our exposition the seminal paper [1], taking advantage of the expositions given by Bernstein [2], and Morain [6]. All three papers are highly recommended for further study. The book by Crandall and Pomerance [3] is an excellent source for known primality tests.

References

- M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Preprint, IIT Kanpur, August 2002.
- [2] D. Bernstein. An exposition of the Agrawal-Kayal-Saxena primality-proving theorem. Preprint, University of Illinois at Chicago, August 2002.
- [3] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective. Springer Verlag, New York, 2001.
- [4] E. Fouvry. Theoreme de Brun-Titchmarche; application au theoreme de Fermant. Invent. Math., 79:383–407, 1985.
- [5] R. Lidl and H. Niederreiter. *Finite Fields*. Cambridge University Press, 2nd edition, 1997.
- [6] F. Morain. Primalité théorique et primalité pratique ou AKS vs. ECPP. Preprint, Laboratoire d'Informatique de l'École Polytechnique, August 2002.

Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, klappi@cs.tamu.edu