
An Introduction to the AKS Primality Test

Andreas Klappenecker

September 4, 2002

A prime p is a positive integer which is divisible by exactly two positive
integers, namely by 1 and p. An integer n > 1 is called composite if it is not
a prime. A fundamental question is:

How can we tell whether an integer n > 1 is prime or not?

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena from IIT Kanpur pro-
posed a new algorithmic solution to this question in August 2002 [1]. Unlike
previous solutions, their algorithm produces the correct answer in polynomial
time. The purpose of these lecture notes is to give a short overview of this
primality test, and to provide a guide to the related literature.

Algorithm 1 (Agrawal, Kayal, Saxena)

Input: An integer n > 1.
0: if n is a power then output composite fi;
1: r := 2;
2: while (r < n) do
3: if gcd(r, n) 6= 1 then output composite fi;
4: if r is prime then
5: q := largest prime factor of r − 1;
6: if (q ≥ 4

√
r log n) and (n(r−1)/q 6≡ 1 mod r) then break fi;

7: fi;
8: r := r + 1;
9: od;

10: for a = 1 to 2
√

r log n do
11: if (x− a)n 6≡ (xn − a) mod (xr − 1, n) then output composite fi;
12: od;
13: output prime;

1

Overview. Algorithm 1 can be divided into three parts.

S1. The first step, line 0, determines whether the number n is of the form
n = md, for some positive integers m and d, with d > 1. This amounts
to check whether bn1/kck = n for some k in the range 2 ≤ k ≤ log n.

S2. The second step, lines 1-9, determines whether n has a small prime
divisor. The while loop is executed until a small prime r ∈ O(log6 n)
is found such that r − 1 has a large prime divisor q, which divides the
multiplicative order of n modulo r.

S3. The last step checks whether the relation (x − a)n ≡ xn − a modulo
(xr − 1, n) holds for various a’s. This step is the crucial part of this
method. Unfortunately, it is also the most time consuming one.

The last step is motivated by the following observation.

Lemma 1 Let a, n be some positive integers such that gcd(a, n) = 1, then n
is a prime if and only if the relation (x− a)n ≡ xn − a mod n holds.

Proof. Suppose that n is a prime. Recall that (x− a)n =
∑n

i=0

(
n
i

)
(−a)n−ixi.

For 0 < i < n,
(

n
i

) ≡ 0 mod n, since n is a prime. The coefficient of
xn is

(
n
n

)
(−a)0 = 1. Notice that (−a)n−1 ≡ 1 mod n by Fermat’s little

theorem, whence the coefficient of x0 is
(

n
0

)
(−a)n ≡ −a mod n. It follows

that (x− a)n ≡ xn − a mod n.
Suppose now that n is composite. Let p be a prime dividing n, and

n = pkm with gcd(p,m) = 1. Repeatedly applying the known identity
(

c
d

) ≡(bc/pc
bd/pc

)(
c mod p
d mod p

)
mod p yields

(
n
pk

) ≡ (
m
1

) ≡ m 6≡ 0 mod p, thus
(

n
pk

) 6≡ 0 mod

n. Since gcd(a, n) 6= 1, (−a)n−pk 6≡ 0 mod n. Thus, the coefficient of xpk
is

nonzero mod n. It follows that (x− a)n 6≡ xn − a mod n for composite n. 2

Checking (x− a)n ≡ xn− a mod n would be too time consuming. There-
fore, the third step rather checks whether (x− a)n ≡ xn − a mod (xr − 1, n)
holds. This is of course more efficient, since the polynomials are then of
degree less than the small prime r.

We have to pay a price for this gain in efficiency. For composite n, it
might now happen that (x − a)n ≡ xn − a mod (xr − 1, n) holds, although
(x − a)n 6≡ xn − a mod n. However, checking sufficiently many distinct a’s
allows to rule out such anomalities. The choice of the prime r guarantees
that we can find a suitable a in the range 1 ≤ a ≤ 2

√
r log n.

2

Correctness. We proceed to show that the algorithm is correct. If the
input is prime, then it follows from our preceding discussion that the output
of Algorithm 1 is prime. The difficulty rests in showing that a composite
number n cannot pass through the tests in steps S1, S2, and S3 without
producing the desired output composite.

Assume that an input n has passed the tests in the steps S1, S2, and S3.
In other words, the algorithm did not report that the number is composite.
If the break statement is never executed, then gcd(r, n) = 1 for all r in the
range 2 ≤ r < n, which means that n is a prime.

Therefore, we may assume that the while loop terminated early by the
break statement in line 6. This means that the algorithm found a prime r such
that the largest prime factor q of r−1 satisfies q ≥ 2s, with s = 2b√rc log n.
We have n(r−1)/q 6≡ 1 mod r as a consequence of the test in line 6. Since
gcd(r, n) = 1, we also have n(r−1)/q 6≡ 0 mod r. Notice that n does not have
any prime factors of size smaller than r ≥ q ≥ s, since such factors would
have been detected by the test in line 3. Finally, we observe that passing
step S3 means that the input n fails all s tests in the for loop in lines 10–12.
In other words, the number n satisfies (x − a)n ≡ (xn − a) mod (xr − 1, n)
for all a in the range 1 ≤ a ≤ s.

The particular choice of s = 2b√rc log n as an upper bound on the for
loop and q ≥ 2s implies that equation (1) in the following theorem is satisfied,
since

(
q+s−1

s

)
>

(
q
s

)s ≥ 2s, and the choice of s implies 2s = n2b√rc. Thus, all
hypotheses of the following theorem are satisfied.

Theorem A. Let n, s be positive integers, n > 1. Assume that n is not a
power. Let r be a prime and denote by q the largest prime factor of r − 1.
Suppose that n does not have a prime factor less than or equal to s, that

(
q + s− 1

s

)
> n2b√rc, (1)

that n(r−1)/q mod r 6∈ {0, 1}, and that (x− a)n ≡ xn − a mod (xr − 1, n) for
all 1 ≤ a ≤ s. Then n has to be a prime.

Remark. It should be noted that a suitable prime r will be found with
certainty. In fact, the while loop will be iterated at most r ∈ O(log6 n) times.
We will discuss complexity issues later.

Proof of Theorem A. Let p denote a prime factor of n satisfying the
condition p(r−1)/q mod r 6∈ {0, 1}. Such a prime has to exists, for otherwise

3

all prime factors p of n would satisfy p(r−1)/q mod r ∈ {0, 1}, therefore n – as
a product of these primes – would have to satisfy n(r−1)/q mod r ∈ {0, 1},
contradicting the hypothesis of the theorem.

The ring R = (Z/nZ)[x]/(xr − 1) is well-suited for algorithmic pur-
poses, but for the analysis is will be simpler to use a finite field. Let
K = Fp[x]/(h(x)), where h(x) denotes an irreducible factor of (xr−1)/(x−1).
The finite field K is a homomorphic image of R. This coarser picture will be
enough, since the constraints on q ensure that this field is not too small:

Lemma 2 Let h(x) ∈ Fp[x] be an irreducible factor of (xr − 1)/(x − 1).
Then deg h(x) ≥ q.

Proof. Recall that the multiplicative order e of p mod r is the smallest expo-
nent e such that pe ≡ 1 mod r. Notice that q must divide e. Fermat’s little
theorem shows that pr−1 ≡ 1 mod r. Hence r−1 = eb for some integer b. By
definition, q divides r−1. If q does not divide e, then q has to divide b, which
yields p(r−1)/q ≡ pe(b/q) ≡ 1 mod p, contradicting our choice of p. Therefore,
q divides e, hence e ≥ q. It is shown in Theorem 2.47 of [5] that the degree
of an irreducible factor h(x) of the cyclotomic polynomial (xr − 1)/(x − 1)
coincides with multiplicative order e of p mod r. 2

Let fa(x) denote the polynomial x − a. It follows from our assumptions
thatfa(x

n) ≡ fa(x)n mod (xr−1, p) for all a in the range 1 ≤ a ≤ s. In addi-
tion, we have fa(x

p) ≡ fa(x)p mod p, since gcd(a, p) = 1. As a consequence,
we obtain similar power laws for products of these polynomials. We form the
group generated by the polynomials fa(x). This data structure will allow to
assemble the information obtained about the individual polynomials.

Lemma 3 Let G be the subgroup of the multiplicative group K∗ generated
by the elements (x − a) with 1 ≤ a ≤ s. Then G is a cyclic group which is
at least of order

(
s+q−1

s

)
.

Proof. Since K∗ is a cyclic group, G must be cyclic as well. Let a, b be
distinct integers in the range 1 ≤ a, b ≤ s. It cannot happen that the
elements (x− a) and (x− b) are equal in K, because this would imply that p
is a small prime dividing |a− b| ≤ s, and n does not have any prime factors
p ≤ s by assumption. The group G contains at least

(
q+s−1

s

)
elements, since

the elements
∏s

i=1(x − i)ei satisfying e1 + e2 + · · · + es ≤ q − 1 < deg h(x)
are pairwise distinct. 2

4

Lemma 4 Let g(x) be a generator of the cyclic group G. The set of expo-
nents E = {e ∈ Z | e ≥ 1, g(xe) ≡ g(x)e mod (xr − 1, p)} is closed under
multiplication.

Proof. Let e, d ∈ E . Thus, g(xe) ≡ g(x)e mod (xr − 1, p). Substituting xd for
x yields g(xed) ≡ g(xd)e mod (xdr − 1, p). Since xr − 1 divides xrd − 1, we
obtain in particular g(xde) ≡ g(xd)e mod (xr−1, p). Therefore, we can derive
g(x)de ≡ (g(x)d)e ≡ g(xd)e ≡ g(xde) mod (xr − 1, p). Thus, ed ∈ E . 2

Lemma 5 We have n, p ∈ E , hence nipj ∈ E.

Proof. The generator g(x) is of the form
∏s

i=1(x− i)ei . Therefore,

g(x)n ≡
s∏

i=1

(x− i)nei ≡
s∏

i=1

(xn − i)ei ≡ g(xn) mod (xr − 1, n),

thus this holds in particular modulo (xr − 1, p). The relation g(xp) ≡
g(x)p mod p holds for any product of the polynomials (x − a). Therefore,
p, n ∈ E . 2

We can now conclude the proof of Theorem A. Consider the products
nipj with 0 ≤ i, j ≤ b√rc. There are (1 + b√rc)2 > r such numbers.
Thus, by the pigeonhole principle, we must have distinct (i, j) and (k, `)
such that nipj ≡ nkp` mod r. Let u = nipj and t = nkp`. By construction,
g(xu) ≡ g(xt) mod (xr−1, p), hence g(x)u ≡ g(x)t mod (xr−1, p). It follows
that g(x)t = g(x)u in the field K. This means that t ≡ u mod |G|. However,
n2b√rc <

(
q+s−1

s

) ≤ |G|. Therefore, t and u must be equal, hence ni−k = pj−`.
It is not possible that i equals k, since this would force j = `. Therefore, n
is of the form n = pm. Since n is not a power, we must have m = 1, hence p
is a prime. This concludes the proof of Theorem A. 2

Complexity. We give a rough complexity estimate to show that the run-
time of Algorithm 1 is bounded by polynomial in the number of digits of n.
The existence of a suitable small prime r is a consequence of results from
analytic number theory:

Lemma 6 There exist two real constants c1, c2 such that there is a prime r in
the range c1(log n)6 ≤ r ≤ c2(log n)6, which satisfies the following property:
r − 1 has a prime factor q ≥ 4b√rc log n and q divides the multiplicative
order of n mod r.

5

This lemma is a consequence of a result by Fouvry [4], see Lemma 4.2 in [1]
for a proof.

Proposition 7 The runtime of Algorithm 1 is polynomial in the number of
digits of n.

Proof. The runtime is determined by the third step, since this is the most time
consuming part of Algorithm 1. Calculating (x− a)n mod (xr − 1, n) with a
square-and-multiply method requires O(log n) multiplications of polynomials
of degree less than r, with coefficients in Z/nZ. The multiplication of two
such polynomials requires O(r2) operations in the ring Z/nZ. Therefore, the
for loop requires O(2

√
r log n · r2 log n) ring operations. A classical multipli-

cation in Z/nZ requires O((log n)2) additions. Assuming r ∈ O((log n)6), we
get a total complexity estimate of O((log n)19). 2

Notes. We followed in our exposition the seminal paper [1], taking advan-
tage of the expositions given by Bernstein [2], and Morain [6]. All three
papers are highly recommended for further study. The book by Crandall
and Pomerance [3] is an excellent source for known primality tests.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Preprint, IIT Kanpur,
August 2002.

[2] D. Bernstein. An exposition of the Agrawal-Kayal-Saxena primality-proving
theorem. Preprint, University of Illinois at Chicago, August 2002.

[3] R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective.
Springer Verlag, New York, 2001.

[4] E. Fouvry. Theoreme de Brun-Titchmarche; application au theoreme de Fer-
mant. Invent. Math., 79:383–407, 1985.

[5] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 2nd
edition, 1997.

[6] F. Morain. Primalité théorique et primalité pratique ou AKS vs. ECPP.
Preprint, Laboratoire d’Informatique de l’École Polytechnique, August 2002.

Department of Computer Science, Texas A&M University, College Station, TX
77843-3112, klappi@cs.tamu.edu

6

