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Agrawal, Kayal, and Saxena gave in [1] a deterministic algorithm to decide
whether or not a given integer n is prime. We gave an exposition of this
algorithm in the lecture notes [2]. We proved there that the AKS algorithm
is correct. It is not obvious, however, that the AKS algorithm has a runtime
that is polynomial in the number of digits of n, because the second step of the
algorithm contains a while loop, which might have an exponential number of
iterations, unless it terminates early. This second step is shown below:

Algorithm 1 Second step of the AKS primality test

Input: An integer n > 1.
1: r := 2;
2: while (r < n) do
3: if gcd(r, n) 6= 1 then output composite fi;
4: if r is prime then
5: q := largest prime factor of r − 1;
6: if (q ≥ 4

√
r log n) and (n(r−1)/q 6≡ 1 mod r) then break fi;

7: fi;
8: r := r + 1;
9: od;

Theorem 1 Let n > 1. The while loop of Algorithm 1 is iterated at most
O((log n)6) times.

The proof of this result depends on results of analytic number theory.
First, we need a standard fact about the distibution of primes:
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Lemma 2 Let π(n) denote the number of primes ≤ n. Then for n ≥ 1:

n

6 log n
≤ π(n) ≤ 8n

log n
.

Let P (n) denote the greatest prime divisor of n. We will call a prime r
special for n if and only if P (r − 1) > (c2(log2 n)6)2/3, where c2 denotes an
absolut constant. The following result by Fouvry will be essential in proving
that a special prime exist for n.

Lemma 3 (Fouvry) There exist constants c > 0 and n0 such that for all
x > n0

|{p | p is prime, p ≤ x, P (p− 1) > x2/3}| ≥ c
x

log x

Roughly speaking, Fouvry’s result asserts that there exist many primes p < n
such that the largest prime factor of p− 1 is big, namely P (p− 1) > x2/3.

Lemma 4 There exist positive constants c1, c2 for which there is a prime
in the interval [c1(log n)6, c2(log n)6] such that r − 1 has a prime factor q ≥
4
√

r log n which satisfies n(r−1)/q 6≡ 1 mod r.

Proof. Let c denote the same constant as in Lemma 3. For large n, the
number of special primes between c1(log n)6 and c2(log n)6 is certainly greater
than

(# special primes in [1..c2(log n)6])− (# primes in [1..c1(log n)6])

≥ cc2(log n)6

6 log(c2 log n)
− 8c1(log n)6

6 log log n
{Lemma 3− upper bound of Lemma 2}

≥ cc2(log n)6

7 log log n
− 8c1(log n)6

6 log log n
{for large n}

=
(log n)6

log log n

(
cc2

7
− 8c1

6

)

We choose the constant c2 ≥ 46 such that the quantity in parentheses is a
positive constant, say c3. Let x = c2(log n)6. Consider the product

γ = (n− 1)(n2 − 1) · · · (nx1/3 − 1).
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A number m has at most log m prime factors. Therefore, the product γ of
x1/3 numbers of size ≤ nx1/3

has at most x1/3 log nx1/3
= x2/3 log n prime

factors.
Since x = c2(log n)6, we get at most x2/3 log n = c

2/3
2 (log n)4 log n =

c
2/3
2 (log n)5 prime factors of γ. For large n, this number is clearly smaller

than c3(log n)6/ log log n, our lower bound for the number of special primes
in the interval [c1(log n)6, c2 log n)6]. We can conclude that there exists at
least one special prime r ≤ c2(log n)6, which does not divide the product γ.

By definition, r − 1 has a prime factor q ≥ (c2(log n)6)2/3 = c
2/3
2 (log n)4.

We have r ≤ c2(log n)6, hence
√

r ≤ c
1/2
2 (log n)3. Thus 4

√
r log n is smaller

than 4c
1/2
2 (log n)4. We have c

2/3
2 (log n)4 ≥ 4c

1/2
2 (log n)4, because c

2/3−1/2
2 =

c
1/6
2 ≥ 4 due to the choice c2 ≥ 46. Therefore, we have established that

q ≥ c
2/3
2 (log n)4 ≥ c

1/2
2 (log n)4 ≥ 4

√
r log n.

It remains to show that n(r−1)/q 6≡ 1 mod r. We know that q ≥ c
2/3
2 (log n)4

and that r − 1 ≤ c2(log n)6. Therefore,

r − 1

q
≤ c2(log n)6

c
2/3
2 (log n)4

= c
1/3
2 (log n)2. (1)

Since γ 6≡ 0 mod r, we know that nk 6≡ 1 mod r for all k in the range 1 ≤ k ≤
x1/3 = c

1/3
2 (log n)2. In particular, n(r−1)/q 6≡ 1 mod r holds because of (1). 2

Theorem 1 follows directly from Lemma 4.

Remark. We followed the excellent paper [1] in our exposition. However, we
adapted the constant c2 to make the argument work. In contrast to [1], we
did not instist on c1 ≥ 46, which leads to an unnecessarily large constant c2.
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