The AKS Primality Test
 Results from Analytic Number Theory

Andreas Klappenecker

September 11, 2002

Agrawal, Kayal, and Saxena gave in [1] a deterministic algorithm to decide whether or not a given integer n is prime. We gave an exposition of this algorithm in the lecture notes [2]. We proved there that the AKS algorithm is correct. It is not obvious, however, that the AKS algorithm has a runtime that is polynomial in the number of digits of n, because the second step of the algorithm contains a while loop, which might have an exponential number of iterations, unless it terminates early. This second step is shown below:

```
Algorithm 1 Second step of the AKS primality test
Input: An integer \(n>1\).
    \(r:=2\);
    while \((r<n)\) do
        if \(\operatorname{gcd}(r, n) \neq 1\) then output composite fi;
        if \(r\) is prime then
            \(q:=\) largest prime factor of \(r-1\);
            if \((q \geq 4 \sqrt{r} \log n)\) and \(\left(n^{(r-1) / q} \not \equiv 1 \bmod r\right)\) then break \(f\);
        fi;
        \(r:=r+1 ;\)
    od;
```

Theorem 1 Let $n>1$. The while loop of Algorithm 1 is iterated at most $O\left((\log n)^{6}\right)$ times.

The proof of this result depends on results of analytic number theory. First, we need a standard fact about the distibution of primes:

Lemma 2 Let $\pi(n)$ denote the number of primes $\leq n$. Then for $n \geq 1$:

$$
\frac{n}{6 \log n} \leq \pi(n) \leq \frac{8 n}{\log n}
$$

Let $P(n)$ denote the greatest prime divisor of n. We will call a prime r special for n if and only if $P(r-1)>\left(c_{2}\left(\log _{2} n\right)^{6}\right)^{2 / 3}$, where c_{2} denotes an absolut constant. The following result by Fouvry will be essential in proving that a special prime exist for n.

Lemma 3 (Fouvry) There exist constants $c>0$ and n_{0} such that for all $x>n_{0}$

$$
\mid\left\{p \mid p \text { is prime, } p \leq x, P(p-1)>x^{2 / 3}\right\} \left\lvert\, \geq c \frac{x}{\log x}\right.
$$

Roughly speaking, Fouvry's result asserts that there exist many primes $p<n$ such that the largest prime factor of $p-1$ is big, namely $P(p-1)>x^{2 / 3}$.

Lemma 4 There exist positive constants c_{1}, c_{2} for which there is a prime in the interval $\left[c_{1}(\log n)^{6}, c_{2}(\log n)^{6}\right]$ such that $r-1$ has a prime factor $q \geq$ $4 \sqrt{r} \log n$ which satisfies $n^{(r-1) / q} \not \equiv 1 \bmod r$.

Proof. Let c denote the same constant as in Lemma 3. For large n, the number of special primes between $c_{1}(\log n)^{6}$ and $c_{2}(\log n)^{6}$ is certainly greater than
(\# special primes in $\left.\left[1 . . c_{2}(\log n)^{6}\right]\right)-\left(\#\right.$ primes in $\left.\left[1 . . c_{1}(\log n)^{6}\right]\right)$

$$
\begin{aligned}
& \geq \frac{c c_{2}(\log n)^{6}}{6 \log \left(c_{2} \log n\right)}-\frac{8 c_{1}(\log n)^{6}}{6 \log \log n} \quad\{\text { Lemma } 3-\text { upper bound of Lemma } 2\} \\
& \geq \frac{c c_{2}(\log n)^{6}}{7 \log \log n}-\frac{8 c_{1}(\log n)^{6}}{6 \log \log n} \quad\{\text { for large } n\} \\
& =\frac{(\log n)^{6}}{\log \log n}\left(\frac{c c_{2}}{7}-\frac{8 c_{1}}{6}\right)
\end{aligned}
$$

We choose the constant $c_{2} \geq 4^{6}$ such that the quantity in parentheses is a positive constant, say c_{3}. Let $x=c_{2}(\log n)^{6}$. Consider the product

$$
\gamma=(n-1)\left(n^{2}-1\right) \cdots\left(n^{x^{1 / 3}}-1\right)
$$

A number m has at most $\log m$ prime factors. Therefore, the product γ of $x^{1 / 3}$ numbers of size $\leq n^{x^{1 / 3}}$ has at most $x^{1 / 3} \log n^{x^{1 / 3}}=x^{2 / 3} \log n$ prime factors.

Since $x=c_{2}(\log n)^{6}$, we get at most $x^{2 / 3} \log n=c_{2}^{2 / 3}(\log n)^{4} \log n=$ $c_{2}^{2 / 3}(\log n)^{5}$ prime factors of γ. For large n, this number is clearly smaller than $c_{3}(\log n)^{6} / \log \log n$, our lower bound for the number of special primes in the interval $\left.\left[c_{1}(\log n)^{6}, c_{2} \log n\right)^{6}\right]$. We can conclude that there exists at least one special prime $r \leq c_{2}(\log n)^{6}$, which does not divide the product γ.

By definition, $r-1$ has a prime factor $q \geq\left(c_{2}(\log n)^{6}\right)^{2 / 3}=c_{2}^{2 / 3}(\log n)^{4}$. We have $r \leq c_{2}(\log n)^{6}$, hence $\sqrt{r} \leq c_{2}^{1 / 2}(\log n)^{3}$. Thus $4 \sqrt{r} \log n$ is smaller than $4 c_{2}^{1 / 2}(\log n)^{4}$. We have $c_{2}^{2 / 3}(\log n)^{4} \geq 4 c_{2}^{1 / 2}(\log n)^{4}$, because $c_{2}^{2 / 3-1 / 2}=$ $c_{2}^{1 / 6} \geq 4$ due to the choice $c_{2} \geq 4^{6}$. Therefore, we have established that

$$
q \geq c_{2}^{2 / 3}(\log n)^{4} \geq c_{2}^{1 / 2}(\log n)^{4} \geq 4 \sqrt{r} \log n
$$

It remains to show that $n^{(r-1) / q} \not \equiv 1 \bmod r$. We know that $q \geq c_{2}^{2 / 3}(\log n)^{4}$ and that $r-1 \leq c_{2}(\log n)^{6}$. Therefore,

$$
\begin{equation*}
\frac{r-1}{q} \leq \frac{c_{2}(\log n)^{6}}{c_{2}^{2 / 3}(\log n)^{4}}=c_{2}^{1 / 3}(\log n)^{2} \tag{1}
\end{equation*}
$$

Since $\gamma \not \equiv 0 \bmod r$, we know that $n^{k} \not \equiv 1 \bmod r$ for all k in the range $1 \leq k \leq$ $x^{1 / 3}=c_{2}^{1 / 3}(\log n)^{2}$. In particular, $n^{(r-1) / q} \not \equiv 1 \bmod r$ holds because of (1).

Theorem 1 follows directly from Lemma 4.
Remark. We followed the excellent paper [1] in our exposition. However, we adapted the constant c_{2} to make the argument work. In contrast to [1], we did not instist on $c_{1} \geq 4^{6}$, which leads to an unnecessarily large constant c_{2}.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Preprint, IIT Kanpur, August 2002.
[2] A. Klappenecker. An introduction to the AKS primality test. Lecture notes, September 2002.

