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Agrawal, Kayal, and Saxena gave in [1] a deterministic algorithm to decide
whether or not a given integer n is prime. We gave an exposition of this
algorithm in the lecture notes [2]. We proved there that the AKS algorithm
is correct. It is not obvious, however, that the AKS algorithm has a runtime
that is polynomial in the number of digits of n, because the second step of the
algorithm contains a while loop, which might have an exponential number of
iterations, unless it terminates early. This second step is shown below:

Algorithm 1 Second step of the AKS primality test

Input: An integer n > 1.
1 r.=2;
2: while (r < n) do

3: if ged(r,n) # 1 then output composite fi;

4: if r is prime then

5: q := largest prime factor of r — 1;

6: if (¢ > 4/rlogn) and (n"~Y/7 # 1 mod r) then break fi;
T fi;

& r:=r+1;

9: od;

Theorem 1 Let n > 1. The while loop of Algorithm 1 is iterated at most
O((logn)®) times.

The proof of this result depends on results of analytic number theory.
First, we need a standard fact about the distibution of primes:
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Lemma 2 Let w(n) denote the number of primes < n. Then forn > 1:

n 8n
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logn
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Let P(n) denote the greatest prime divisor of n. We will call a prime r
special for n if and only if P(r — 1) > (co(log,n)®)*?, where ¢, denotes an
absolut constant. The following result by Fouvry will be essential in proving
that a special prime exist for n.

Lemma 3 (Fouvry) There ezist constants ¢ > 0 and ng such that for all
T > Ny

1s prime,p <z, P(p—1 > 228 > ¢
{p|p is prime,p <z, P(p — 1) }|_logac

Roughly speaking, Fouvry’s result asserts that there exist many primes p < n
such that the largest prime factor of p — 1 is big, namely P(p — 1) > x2/3,

Lemma 4 There exist positive constants ci,cs for which there is a prime
in the interval [c;(logn)®, co(logn)®] such that v — 1 has a prime factor ¢ >
44/ logn which satisfies n"~1/9 # 1 mod 7.

Proof. Let ¢ denote the same constant as in Lemma 3. For large n, the
number of special primes between ¢ (log n)® and ¢y (log n)® is certainly greater
than

(# special primes in [1..co(logn)®]) — (# primes in [1..c;(logn)%])

cca(logn)® 8¢y (logn)®
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We choose the constant ¢, > 4% such that the quantity in parentheses is a
positive constant, say c3. Let = cy(logn)®. Consider the product

1/3

y=m—-1)n*-1)---(n*" —1).



A number m has at most logm prime factors. Therefore, the product 7 of
23 numbers of size < n®’ has at most #¥/3logn®’’ = 22/3logn prime
factors.

Since = = cx(logn)®, we get at most z2/3logn = ¢2*(logn)*logn =
cg/ ®(logn) prime factors of 4. For large n, this number is clearly smaller
than c3(logn)®/loglogn, our lower bound for the number of special primes
in the interval [c;(logn)%, calogn)®]. We can conclude that there exists at
least one special prime r < ¢y(logn)®, which does not divide the product 7.

By definition, r — 1 has a prime factor ¢ > (c2(logn)8)*3 = ¢2/*(logn)*.
We have r < cy(logn)®, hence /7 < cy/*(logn)3. Thus 4,/rlogn is smaller
than 40;/2(10g n)*. We have cg/s(log n)t > 40;/2(10g n)?, because A3

cé/ 6 > 4 due to the choice ¢y > 4%. Therefore, we have established that
g > c/*(logn)" > cy/*(logn)" > 4+/rlogn.

It remains to show that n("=1/7 # 1 mod r. We know that ¢ > cg/g(log n)4
and that r — 1 < cy(logn)®. Therefore,

r—1 _ cy(logn)®
< 235 ) = cé/g(log n)?. (
q e " (logn)4

—_
~—

Since v # 0 mod r, we know that n* # 1 mod r for all £ in the range 1 < k <
213 = ¢/*(log n)2. In particular, n"~1/9 % 1 mod r holds because of (1). O

Theorem 1 follows directly from Lemma 4.

Remark. We followed the excellent paper [1] in our exposition. However, we
adapted the constant ¢y to make the argument work. In contrast to [1], we
did not instist on ¢; > 4%, which leads to an unnecessarily large constant c,.
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