The AKS Primality Test Results from Analytic Number Theory

Andreas Klappenecker

September 11, 2002

Agrawal, Kayal, and Saxena gave in [1] a deterministic algorithm to decide whether or not a given integer n is prime. We gave an exposition of this algorithm in the lecture notes [2]. We proved there that the AKS algorithm is correct. It is not obvious, however, that the AKS algorithm has a runtime that is polynomial in the number of digits of n, because the second step of the algorithm contains a while loop, which might have an exponential number of iterations, unless it terminates early. This second step is shown below:

Algorithm 1 Second step of the AKS primality test

Input: An integer n > 1. 1: r := 2;2: while (r < n) do if $gcd(r, n) \neq 1$ then output composite fi; 3: 4: if r is prime then q := largest prime factor of r - 1; 5: if $(q \ge 4\sqrt{r} \log n)$ and $(n^{(r-1)/q} \not\equiv 1 \mod r)$ then break fi; 6: fi: 7: r := r + 1;8: 9: **od**;

Theorem 1 Let n > 1. The while loop of Algorithm 1 is iterated at most $O((\log n)^6)$ times.

The proof of this result depends on results of analytic number theory. First, we need a standard fact about the distibution of primes: **Lemma 2** Let $\pi(n)$ denote the number of primes $\leq n$. Then for $n \geq 1$:

$$\frac{n}{6\log n} \le \pi(n) \le \frac{8n}{\log n}.$$

Let P(n) denote the greatest prime divisor of n. We will call a prime r **special** for n if and only if $P(r-1) > (c_2(\log_2 n)^6)^{2/3}$, where c_2 denotes an absolut constant. The following result by Fouvry will be essential in proving that a special prime exist for n.

Lemma 3 (Fouvry) There exist constants c > 0 and n_0 such that for all $x > n_0$

$$|\{p \mid p \text{ is prime}, p \le x, P(p-1) > x^{2/3}\}| \ge c \frac{x}{\log x}$$

Roughly speaking, Fouvry's result asserts that there exist many primes p < n such that the largest prime factor of p-1 is big, namely $P(p-1) > x^{2/3}$.

Lemma 4 There exist positive constants c_1, c_2 for which there is a prime in the interval $[c_1(\log n)^6, c_2(\log n)^6]$ such that r-1 has a prime factor $q \ge 4\sqrt{r} \log n$ which satisfies $n^{(r-1)/q} \not\equiv 1 \mod r$.

Proof. Let c denote the same constant as in Lemma 3. For large n, the number of special primes between $c_1(\log n)^6$ and $c_2(\log n)^6$ is certainly greater than

(# special primes in $[1..c_2(\log n)^6]) - (\# \text{ primes in } [1..c_1(\log n)^6])$

$$\geq \frac{cc_2(\log n)^6}{6\log(c_2\log n)} - \frac{8c_1(\log n)^6}{6\log\log n} \quad \{\text{Lemma 3} - \text{upper bound of Lemma 2}\}$$
$$\geq \frac{cc_2(\log n)^6}{7\log\log n} - \frac{8c_1(\log n)^6}{6\log\log n} \quad \{\text{for large } n\}$$
$$= \frac{(\log n)^6}{\log\log n} \left(\frac{cc_2}{7} - \frac{8c_1}{6}\right)$$

We choose the constant $c_2 \ge 4^6$ such that the quantity in parentheses is a positive constant, say c_3 . Let $x = c_2(\log n)^6$. Consider the product

$$\gamma = (n-1)(n^2 - 1) \cdots (n^{x^{1/3}} - 1).$$

A number *m* has at most $\log m$ prime factors. Therefore, the product γ of $x^{1/3}$ numbers of size $\leq n^{x^{1/3}}$ has at most $x^{1/3} \log n^{x^{1/3}} = x^{2/3} \log n$ prime factors.

Since $x = c_2(\log n)^6$, we get at most $x^{2/3}\log n = c_2^{2/3}(\log n)^4\log n = c_2^{2/3}(\log n)^5$ prime factors of γ . For large n, this number is clearly smaller than $c_3(\log n)^6/\log\log n$, our lower bound for the number of special primes in the interval $[c_1(\log n)^6, c_2\log n)^6]$. We can conclude that there exists at least one special prime $r \leq c_2(\log n)^6$, which does not divide the product γ .

By definition, r-1 has a prime factor $q \ge (c_2(\log n)^6)^{2/3} = c_2^{2/3}(\log n)^4$. We have $r \le c_2(\log n)^6$, hence $\sqrt{r} \le c_2^{1/2}(\log n)^3$. Thus $4\sqrt{r}\log n$ is smaller than $4c_2^{1/2}(\log n)^4$. We have $c_2^{2/3}(\log n)^4 \ge 4c_2^{1/2}(\log n)^4$, because $c_2^{2/3-1/2} = c_2^{1/6} \ge 4$ due to the choice $c_2 \ge 4^6$. Therefore, we have established that

$$q \ge c_2^{2/3} (\log n)^4 \ge c_2^{1/2} (\log n)^4 \ge 4\sqrt{r} \log n.$$

It remains to show that $n^{(r-1)/q} \not\equiv 1 \mod r$. We know that $q \ge c_2^{2/3} (\log n)^4$ and that $r-1 \le c_2 (\log n)^6$. Therefore,

$$\frac{r-1}{q} \le \frac{c_2(\log n)^6}{c_2^{2/3}(\log n)^4} = c_2^{1/3}(\log n)^2.$$
(1)

Since $\gamma \not\equiv 0 \mod r$, we know that $n^k \not\equiv 1 \mod r$ for all k in the range $1 \le k \le x^{1/3} = c_2^{1/3} (\log n)^2$. In particular, $n^{(r-1)/q} \not\equiv 1 \mod r$ holds because of (1). \Box

Theorem 1 follows directly from Lemma 4.

Remark. We followed the excellent paper [1] in our exposition. However, we adapted the constant c_2 to make the argument work. In contrast to [1], we did not instified on $c_1 \ge 4^6$, which leads to an unnecessarily large constant c_2 .

References

- M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Preprint, IIT Kanpur, August 2002.
- [2] A. Klappenecker. An introduction to the AKS primality test. Lecture notes, September 2002.