CONGRUENCES

for the Perplexed

Andreas Klappenecker

September 24, 2002

Two integers a and b are called congruent modulo m, written $a \equiv b \bmod m$, if and only if m divides $a-b$. In other words, $a-b$ is an element of $m \mathbf{Z}=$ $\{m x \mid x \in \mathbf{Z}\}$, an ideal in the ring \mathbf{Z} of integers.

X1 Show that $a_{0} \equiv b_{0} \bmod m$ and $a_{1} \equiv b_{1} \bmod m$ implies $a_{0} a_{1} \equiv b_{0} b_{1} \bmod m$.
Let $\mathbf{Z}[x]$ be the ring of polynomials with integer coefficients. The congruence $a(x) \equiv b(x) \bmod \left\langle x^{r}-1\right\rangle$ means that the difference $a(x)-b(x)$ is a multiple of the polynomial $x^{r}-1$. A simple but important consequence is that $x^{r} \equiv 1 \bmod \left\langle x^{r}-1\right\rangle$ holds.

Therefore, $a_{3} x^{3}+a_{0} \equiv a_{3}+a_{0} \bmod \left\langle x^{3}-1\right\rangle$, because $a_{3} x^{3}$ is congruent to a_{3} modulo $x^{3}-1$. Similarly, $a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \equiv$ $\left(a_{5}+a_{3}+a_{1}\right) x+\left(a_{4}+a_{2}+a_{0}\right) \bmod \left\langle x^{2}-1\right\rangle$.

X2 Show that $a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}-\left(a_{5}+a_{3}+a_{1}\right) x-\left(a_{4}+a_{2}+a_{0}\right)$ is indeed a multiple of $x^{2}-1$.

The congruence of polynomials in $\mathbf{Z}[x]$ modulo the ideal $\left\langle x^{r}-1, n\right\rangle$ is crucial in the AKS primality test. Again, $a(x) \equiv b(x) \bmod \left\langle x^{r}-1, n\right\rangle$ means that the difference $a(x)-b(x)$ is an element of the ideal $\left\langle x^{r}-1, n\right\rangle$.

The most important consequences are that $x^{r} \equiv 1 \bmod \left\langle x^{r}-1, n\right\rangle$ and that $n \equiv 0 \bmod \left\langle x^{r}-1, n\right\rangle$.

X3 Let $m=n \bmod r$. Explain why $x^{n}-a \equiv x^{m}-a \bmod \left\langle x^{r}-1, n\right\rangle$.
X4 Implement a fast algorithm to evaluate $(x-a)^{n} \bmod \left\langle x^{r}-1, n\right\rangle$.

Solutions

S1 It follows from the hypothesis that m divides $a_{0}-b_{0}$, hence m divides $a_{0} a_{1}$ $b_{0} a_{1}$, whence $a_{0} a_{1} \equiv b_{0} a_{1} \bmod m$. Similarly, we get $b_{0} a_{1} \equiv b_{0} b_{1} \bmod m$ from $a_{1} \equiv b_{1} \bmod m$. Consequently, $a_{0} a_{1} \equiv b_{0} a_{1} \equiv b_{0} b_{1} \bmod m$, which proves the result.

S2 $a_{5} x^{5}+a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}-\left(a_{5}+a_{3}+a_{1}\right) x-\left(a_{4}+a_{2}+a_{0}\right)=$ $\left(a_{5} x^{3}+a_{4} x^{2}+\left(a_{5}+a_{3}\right) x+\left(a_{4}+a_{2}\right)\right)\left(x^{2}-1\right)$.

S3 We have $x^{n}=x^{r q+m}=\left(x^{r}\right)^{q} x^{m} \equiv x^{m} \bmod \left\langle x^{r}-1, n\right\rangle$, since x^{r} is equivalent to 1 modulo $\left\langle x^{r}-1, n\right\rangle$.

S4 Use square and multiply with arithmetic modulo n. Take advantage of the fact that x^{r} is congruent to 1 , whenever the resulting polynomial is of degree $\geq r$. For large n, it might pay off to use the binary gcd algorithm in the implementation of the modular arithmetic.

