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A thorough understanding of the Agrawal, Kayal, and Saxena primality test
requires some tools from algebra and elementary number theory. We collect
here some basic definitions and facts. These notes cannot replace a standard
text on algebra, but will hopefully provide enough background to make the
beautiful result [1] accessible to a computer scientist. We provide numerous
exercises so that the interested reader can gain a working knowledge in a
short amount of time.

Groups. A group is a set G which is equipped with a binary operation
◦: G×G → G, such that

i) the associative law (a ◦ b) ◦ c = a ◦ (b ◦ c) holds for all a, b, c ∈ G,
ii) there exists an identity e ∈ G satisfying a ◦ e = e ◦ a = a for all a ∈ G,
iii) each element a ∈ G has an inverse a−1 satisfying a−1 ◦ a = a ◦ a−1 = e.

The prototype example of a group G is given by a set of invertible n× n
matrices with complex entries, such that G contains the identity matrix, is
closed under matrix multiplication and matrix inversion. The composition ◦
is given by matrix multiplication, e is the identity matrix, and a−1 is the
inverse matrix of a.

The example illustrates that the group operation ◦ is not necessarily
commutative, that is, in general a◦ b will not be the same as b◦a. A group is
called abelian if a ◦ b = b ◦ a holds for all a, b ∈ G. The number of elements
in G is called the order of G. A group of finite order is said to be finite.

X1 Construct a finite non-abelian group.

An example of an abelian group is given by the set of integers Z with ◦
given by addition. Another example is given by the finite set Z/nZ =
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{0, 1, · · · , n−1}, where n > 1 is an integer and ◦ denotes addition of integers
modulo n. The nonzero complex numbers C∗ with ◦ given by multiplication
is also an abelian group.

X2 Is the set of non-negative integers Z≥0 with the usual addition a group?

Let (G, ◦) be a group. A nonempty subset H of G such that x ◦ y ∈ H
and x−1 ∈ H for all x, y ∈ H is called a subgroup of G. The subgroup H is
apparently a group. The notation H ≤ G means that H is a subgroup of G.
The set g ◦H = {g ◦ h |h ∈ H}, g ∈ G, is called a left coset of H in G.

For example, the set G = Z/4Z = {0, 1, 2, 3} with addition modulo 4 is
a group (with composition ◦ written as addition). The subset H = {0, 2} is
a subgroup of G. The set 1 + H = {1, 3} is a coset of H in G. Notice that
0 + H = 2 + H and that 1 + H = 3 + H.

X3 Let G be a group, H ≤ G. Show that |H| = |g ◦H| for all g ∈ G. Show that
either m ◦H = n ◦H or m ◦H ∩ n ◦H = ∅ holds for m,n ∈ G.

X4 Let G be a finite group, H ≤ G. Prove that |H| divides |G|.
We abbreviate the composition a◦a◦· · ·◦a of n times of a by an. We write

a−n for the inverse of an. It is understood that a0 = e. The group operation ◦
is sometimes written additively a ◦ b = a + b. The identity element is then
denoted by 0, the inverse of an element a by −a, and an is expressed by na.

Let X be a subset of a group G. Then 〈X〉 denotes the smallest subgroup
of G containing X, called the subgroup of G generated by X. Notice
that

〈X〉 = {ga1
1 · · · ga`

` | gi ∈ X, ai ∈ Z, ` ∈ Z, ` ≥ 1}.
A group G is called cyclic if and only if there exists an element a ∈ G such
that G = 〈a〉. For instance, the additive group of integers Z is a cyclic group
generated by the element 1. Similarly, Z/nZ with addition modulo n is a
cyclic group generated by 1.

X5 Is the set Z × Z with the usual composition (a, b) + (c, d) = (a + c, b + d) a
cyclic group?

Let G be a finite group. The order of an element g ∈ G is defined to be
the smallest exponent such that gk = 1. The set {1, g, g2, · · · , gk−1} coincides
with the cyclic group 〈g〉 generated by g. It follows from X4 that the order
of g must divide |G|. In particular, we have g|G| = 1 for all elements g ∈ G.
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X6 Prove Fermat’s Little Theorem: If p is a prime, and gcd(a, p) = 1, then
ap−1 ≡ 1 mod p.

If p is a prime, then the subset (Z/pZ)∗ of nonzero elements of Z/pZ
forms a group under multiplication modulo p. Gauß proved that (Z/pZ)∗ is
a cyclic group. For instance, if p = 5, then (Z/pZ)∗ = {1, 2, 3, 4} is generated
by 2, since 〈2〉 = {20, 21, 22, 23} = {1, 2, 4, 3}.

Rings and Fields. A ring is a set R which is equipped with two binary
operations, called addition and multiplication, such that

i) R is an abelian group under addition,
ii) multiplication is associative and posseses an identity element,
iii) multiplication is distributive with respect to addition.

We denote addition by a + b, and multiplication by juxtaposition ab. The
identity element of addition is denoted by 0, and 1 denotes the identity
element for multiplication. The ring R is said to be commutative if multi-
plication is commutative. A field is a commutative ring with 1 6= 0 in which
every nonzero element is invertible with respect to multiplication.

X7 Explicitly state the axioms of a ring, a commutative ring, a field.

X8 Determine whether the set of 2×2 matrices over the real numbers with matrix
addition and matrix multiplication as binary operations is a ring, a commutative
ring, a field.

The set Z of integers with the usual addition and multiplication is an
example of a commutative ring. The set Z/nZ = {0, 1, . . . , n − 1} with
addition modulo n and multiplication modulo n is another example of a
commutative ring.

X9 Show that ab = ac, a 6= 0, does not necessarily imply b = c in a ring. Does
this law hold in a field?

X10 Show that Z/nZ is a field if and only if n is a prime.

Polynomial Rings. A polynomial over a commutative ring R is an ex-
pression of the form

f(x) = anxn + · · ·+ a1x + a0,
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where the coefficients ai, 0 ≤ i ≤ n, are elements of R and x is a variable with
indeterminate meaning. The set of all such expressions is denoted by R[x].
The polynomial 0xm+n + · · · + 0xn+1 + anx

n + · · · + a1x + a0 is regarded
as the same polynomial as f(x). If an 6= 0, then n is called the degree of
f(x), denoted by deg f(x). In this case an = lc(f(x)) is called the leading
coefficient of f(x).

Let g(x) = bmxm + · · · + b1x + b0 be a polynomial in R[x]. Addition of
polynomials is defined by

f(x)+g(x) = bmxm + · · ·+bn+1x
n+1 +(an +bn)xn + · · ·+(a1 +b1)x+(a0 +b0),

where we assumed without loss of generality that m ≥ n. The multiplication
of polynomials is defined by

f(x)g(x) = cm+nxm+n + · · ·+ c2x
2 + c1x + c0, where ck =

∑

i+j=k

aibj.

X11 Let R be a commutative ring. Show that R[x] is a commutative ring.

Let p be a prime. We denote by Fp the finite field Z/pZ. The ring Fp[x]
has a Euclidean division with remainder. The consequence is that this ring
resembles in many ways the ring of integers.

X12 Let f, g ∈ Fp[x] with g 6= 0. Prove that there exist elements q, r ∈ Fp[x]
such that f(x) = q(x)g(x) + r(x), where r(x) = 0 or deg r(x) < deg g(x).

Ideals. An ideal in a commutative ring R is an additive subgroup I of R
such that if r ∈ R and s ∈ I, then rs ∈ I. An ideal I is said to be generated
by a subset S ⊂ I if and only if each element t ∈ I can be written in the form
t =

∑n
i=1 risi for some ri ∈ R and si ∈ I. We denote the ideal generated by

the subset S ⊂ R by 〈S〉. An ideal is said to be principal if and only if it
can be generated by a single element in R.

For example, in the ring Z of integers, the ideal 〈6, 15〉 is given by the set
〈6, 15〉 = {6n + 15m |n,m ∈ Z} = {3m |m ∈ Z}.

X13 Prove that every ideal in Fp[x] is a principal ideal.

X14 Prove: if 〈d(x)〉 = 〈a(x), b(x)〉 in Fp[x], then d(x) = gcd(a(x), b(x)).
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Let I be an ideal of a commutative ring R. The cosets r + I, r ∈ R, form
a partition of R, because I is in particular a subgroup of the additive group
of R. Two elements a, b ∈ R are called congruent modulo I if and only if
they belong to the same coset of I. We denote the congruence of a and b by

a ≡ b mod I.

In other words, a ≡ b mod I if and only if a− b ∈ I.

X15 Explain the meaning of a(x) ≡ b(x) mod 〈n, xr − 1〉 in Z[x].

X16 If a ≡ b mod I and c ≡ d mod I, then a+c ≡ b+d mod I and ac ≡ bd mod I.

An ideal I of a commutative ring R allows to define a new ring, the
residue class ring R/I. The elements of R/I are the cosets r + I of the
ideal I. The addition and multiplication operations are respectively defined
by

(a + I) + (b + I) = (a + b) + I, (a + I)(b + I) = ab + I.

The axioms of a commutative ring are easily verified for R/I.
The prototype example is the ring Z of integers. An ideal in Z is of the

form nZ, since all ideals are principal in Z. The residue class ring Z/nZ
gives then the usual modular arithmetic.

Finite Fields. Fields with a finite number of elements find applications
in algorithms of cryptography or coding theory, and in numerous number
theoretic algorithms. We begin by looking at a few small fields.

The arithmetic of the field F2 = Z/2Z with two elements can be summa-
rized by

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Similarly, the arithmetic of the finite field F3 = Z/3Z is fully described by

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
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A finite field with four element exists. However, we have convinced ourselves
in exercise X10 that is cannot be of the form Z/4Z. The idea is to construct
this field as a residue class ring of F2[x] modulo an ideal I.

We already know that F = F2[x]/I is a commutative ring. We need to
choose the ideal I such that each element r + I 6= 0 + I of F is invertible,
which means that there exists a residue class s+ I such that (r + I)(s+ I) =
rs + I = 1 + I.

Recall that an ideal in Fp[x] is of the form 〈h(x)〉 by X13. A nonconstant
polynomial in Fp[x] is said to be irreducible if it cannot be written as a
product of polynomials of postivie degree.

X17 Let p be a prime, Fp = Z/pZ, h(x) ∈ Fp[x] with deg h(x) > 1. Show that
the residue class ring Fp[x]/〈h(x)〉 is a field if and only if h(x) is an irreducible
polynomial in Fp[x].

The construction of a finite field with four elements in now a simple
matter. Note that the polynomial h(x) = x2 + x + 1 is irreducible in F2[x].
The residue classes of F2[x]/〈x2 + x + 1〉 are given by the four elements

0 + 〈x2 + x + 1〉, 1 + 〈x2 + x + 1〉, x + 〈x2 + x + 1〉, 1 + x + 〈x2 + x + 1〉.

For simplicity, we will calculate with the representatives 0, 1, x, 1+x modulo
the polynomial x2 +x+1 in F2[x]. The addition of the elements x and x+1
yields 1 in F2[x]. The multiplication of x and x + 1 yields x(x + 1) = x2 + x
which is equivalent to 1 modulo x2 + x + 1. Proceeding in this way, we can
summarize the arithmetic rules of the field F4

∼= F2[x]/〈x2 + x + 1〉 by

+ 0 1 x 1 + x
0 0 1 x 1 + x
1 1 0 1 + x x
x x 1 + x 0 1

1 + x 1 + x x 1 0

· 0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

X18 Construct a finite field F8 with 8 elements.

A finite field F has always a subfield with a prime number of elements. This
subfield Fp is obtained by repeatedly adding the identity 1 of F to itself. The
field F can be interpreted as a vector space over Fp. It follows the number of
elements of a finite field is a prime power. If dimFp F = n, then F contains
pn elements.
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It can be shown that there exist irreducible polynomials in Fp[x] of any
given degree n. It turns out that any two fields with pn elements are iso-
morphic. Therefore, any finite field can be obtained by the residue class ring
construction Fp[x]/〈h(x)〉, which we have described above.

It should be noted that the multiplicative group of nonzero elements of a
finite field is always a cyclic group. For example, there exists a polynomial
g(x) ∈ Fp[x] such that any nonzero element f(x) + 〈h(x)〉 in the finite field
Fp[x]/〈h(x)〉 is of the form g(x)m + 〈h(x)〉 for some integer m.

Final Remarks. There is of course much more that can be said about
finite fields, rings, and groups. For a computer scientist, however, I would
recommend to toy around with the ideas presented here. A computer algebra
system is the perfect companion for further explorations. Good choices are
GAP, MAGMA, Mathematica, or Maple.
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Solutions

S1 Let G be the set of invertible 2 × 2 matrices over the field with two ele-
ments F2 = {0, 1}. The group contains six elements, and is non-abelian, since(

1 1
0 1

)(
0 1
1 0

)
6=

(
0 1
1 0

)(
1 1
0 1

)
.

S2 No, since there is no integer a ≥ 0 such that 1 + a = 0.

S3 Notice that x 7→ g ◦ x is a bijective mapping, thus |H| = |g ◦ H|. To prove
the second statement, notice that there is nothing to prove if m ◦H and n ◦H are
disjoint. Thus, let k ∈ m ◦H and k ∈ n ◦H. Thus, there exist h1, h2 ∈ H such
that k = m ◦ h1 = n ◦ h2. Hence m ◦ h1 ◦ h−1

2 = n, and m ◦ h1 ◦ h−1
2 ◦ h = n ◦ h for

all h ∈ H. Thus, n ◦H ⊆ m ◦H. Similarly, m ◦H ⊆ n ◦H.

S4 By exercise X3, G is partitioned by the cosets of H, and all have the same
size |H|. Thus |G| is a multiple of |H|.

S5 No. If Z×Z were generated by a single element (a, b), then all elements would
be of the form (na, nb) for some n ∈ Z. It immediately follows that a and b have
to equal 1, since the projection onto one coordinate must be Z. This would imply
that the cyclic group just generates the diagonal of Z× Z, contradiction.

S6 We can regard a as an element of (Z/pZ)∗. Note that gcd(a, p) = 1 and
gcd(b, p) = 1 implies gcd(ab, p) = 1. We also have gcd(1, p) = 1. Since gcd(a, p) =
1 = ar + ps, we have that a−1 = r is a nonzero element in Z/pZ. Therefore,
(Z/pZ)∗ is a group, since it contains the identity 1, is closed under multiplication,
and contains an inverse for each element. The order of this group is p− 1, hence
ap−1 = 1 in (Z/pZ)∗. This proves the claim.

S7 We can express the axioms of a ring by the following identities:

a + (b + c) = (a + b) + c (associativity of addition)
0 + a = a + 0 (zero is the identity of addition)

(−a) + a = a + (−a) = 0 (negative)
a + b = b + a (commutativity of addition)
a (b c) = (a b) c (associativity of multiplication)

a 1 = 1 a = a (unit element)
(a + b)c = ac + bc (left distributive law)
a(b + c) = ab + ac (right distributive law)

A commutative ring also satisfies ab = ba. A field is a commutative ring that
satisfies 1 6= 0 as well as a−1a = aa−1 = 1 for all a 6= 0.
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S8 The multiplication of matrices is not commutative, thus the set it is not a
commutative ring, in particular not a field. The usual rules for matrix addition
and multiplication imply that the set is a ring.

S9 Let Z/4Z. Then 2 · 2 = 2 · 0 = 0, but 2 6= 0. In a field, the element a has an
inverse a−1, implying b = a−1(ab) = a−1(bc) = c.

S10 If n = 1, then 1 = 0 in Z/nZ, hence it is not a field. We may assume that
n > 1. Suppose that n is composite, n = ab with a, b 6= 1. Then ab = a0 but
b 6= 0, because n > 1. Since this cancellation law does not hold, Z/nZ cannot be
a field by exercise X9. If p is a prime, then Z/pZ is a commutative ring in which
1 6= 0 and every element a 6= 0 has a multiplicative inverse (which can be found
using the extended Euclidean algorithm), hence Z/pZ is a field.

S11 Routine verification, see Section 2.10 in [2].

S12 Let n = deg f(x), m = deg g(x), and α = lc(f(x)), β = lc(g(x)). We prove
the result by induction on n. If n < m, then q(x) = 0 and r(x) = f(x) does the
job. If n ≥ m, then the polynomial f0(x) = f(x) − αβ−1xn−mg(x) has degree
smaller than f(x). By induction, there exist polynomials q0(x), r0(x) such that
f0(x) = q0(x)g(x) + r0(x) with r0(x) = 0 or deg r0(x) < deg g(x). Let q(x) =
αβ−1xn−m + q0(x) and r(x) = r0(x). This choice gives f(x) = q(x)g(x) + r(x), as
desired.

S13 Let I be a ideal in Fp[x]. If I = 〈0〉, then we are done. If not, then I must
contain a nonzero element. Choose an element s(x) 6= 0 of I of minimal degree.
If t(x) is an arbitrary element of I, then t(x) = q(x)s(x) + r(x) with r(x) = 0 or
deg r(x) < deg s(x). Suppose that r(x) 6= 0, which means that deg r(x) < deg s(x).
Since s(x), t(x) ∈ I, we have r(x) = t(x)−q(x)s(x) ∈ I. However, r(x) is of smaller
degree than s(x), contradiction. Therefore, r(x) = 0, and we can conclude that all
elements in the ideal I are multiples of s(x), that is, I = 〈s(x)〉.

S14 We have a(x) = g(x)d(x) and b(x) = h(x)d(x), since 〈a(x), b(x) ⊆ 〈d(x)〉.
Hence d(x) is a common divisor of a(x) and b(x). Since 〈d(x)〉 ⊆ 〈a(x), b(x)〉, we
have d(x) = a(x)r(s) + b(x)s(x) for some r(x), s(x) ∈ Fp[x]. Thus, any common
divisor of a(x) and b(x) must divide d(x).

S15 The notation means that there exist polynomials g(x), h(x) ∈ Z[x] such that
a(x)− b(x) = ng(x) + (xr − 1)h(x), that is, a(x) = b(x) + ng(x) + (xr − 1)h(x).

S16 By assumption, a− b and c− d are elements of I. Thus (a− b) + (c− d) =
(a+ c)− (b+d) ∈ I, which shows that a+ c ≡ b+d mod I. Moreover, (a− b)c and
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b(c − d) are elements of I, hence (a − b)c + b(c − d) = ac − bd ∈ I, which proves
ac ≡ bd mod I.

S17 The nonzero elements of Fp[x]/〈h(x)〉 can be assumed to be of the form
g(x) + 〈h(x)〉 with g(x) 6= 0 and deg g(x) < deg h(x). If h(x) is irreducible, then
gcd(g(x), h(x)) = 1 = g(x)r(x)+h(x)s(x) for some polynomials r(x), s(x) ∈ Fp[x]
by exercise X13. Hence, r(x) is the inverse of g(x) modulo h(x). It follows that
Fp[x]/〈h(x)〉 is a finite field provided that h(x) is irreducible. On the other hand,
if h(x) is reducible, then there exist polynomials f(x), g(x) ∈ Fp[x] of degree > 1
such that h(x) = f(x)g(x). Note that g(x)0 = g(x)f(x) in Fp[x]/〈h(x)〉 does not
imply f(x) = 0, hence the cancellation law does not hold, whence Fp[x]/〈h(x)〉
cannot be a field by exercise X9.

S18 The polynomial h(x) = x3 + x2 + 1 is irreducible in F2[x]. The field is given
by F2[x]/〈h(x)〉. We leave the construction of addition and multiplication table
to the reader.
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