Problem Set 2

CPSC 629 Analysis of Algorithms
Andreas Klappenecker

The assignment is due next Tuesday (10/01/2002), before class.
Q1 Show that an integer $p \geq 2$ is a prime if and only if

$$
\begin{equation*}
(p-1)!\equiv-1 \bmod p \tag{1}
\end{equation*}
$$

holds. Hint: If p is prime, consider the pairs $x, x^{-1} \in \mathbf{F}_{p}^{*}=\mathbf{F}_{p} \backslash\{0\}$. When is $x^{-1}=x$? The case ' p is not a prime' is easy.

Q2 Dr. S. Mart suggests to use equation (1) to test whether or not p is a prime. He points out that $2^{\left(\log _{2} 2+\log _{2} 3+\cdots+\log _{2}(p-1)\right)}$ can be used to quickly calculate $(p-1)$! S. Mart claims that this is much faster than the AKS primality test. Is he right? (Either desribe the flaw of his method or give a prove that he is right)

Let p be an odd prime. A number $a \in \mathbf{F}_{p}^{*}$ is a quadratic residue iff $x^{2} \equiv a \bmod p$ has a solution for the unknown x. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be 1 if a is a quadratic residue modulo p, and to be -1 otherwise.

Q3 Give a short proof that there are exactly $(p-1) / 2$ quadratic residues modulo p.
Q4 Show that if $a \in \mathbf{F}_{p}^{*}$, then

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \bmod p
$$

Give an efficient algorithm to determine whether or not a given number a is a quadratic residue modulo p. [Remark: This is useful in the Quadratic Sieve]

The next exercise shows how to find the square root of a quadratic residue. We only consider $p \equiv 3 \bmod 4$, since that is the easiest case.

Q5 Let p be an odd prime of the form $p=4 k+3$. Show that a^{k+1} is a square root of a modulo p. Which algorithm in the textbook [CLRS] allows to calculate this square root in a fast way? How much time does this algorithm need if p has β bits?

Reading Assignment: Read Chapter 31 in [CLRS] Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 2nd edition, MIT Press, 2001.

