The PRIMES Challenge

The problem to decide whether a given integer n is prime or composite has a long history. In a very recent preprint (August 6, 2002), Agrawal, Kayal, and Saxena of IIT Kanpur present a deterministic polynomial time algorithm for this problem, see http://www.cse.iitk.ac.in/primality.pdf. The algorithm seems to be correct. However, the complexity of the algorithm is $O\left((\log n)^{12}\right.$ poly $\left.(\log \log n)\right)$.

Challenge I offer an award of US $\$ 100$ for the first person to find a deterministic algorithm for PRIMES with at most $O\left((\log n)^{3} p o l y(\log \log n)\right)$ time complexity.

Hint Prove the conjecture stated in the paper.
Restriction You need to be affiliated with Texas A\&M University to be eligible for this award.
Background R. Crandall, C. Pomerance: Prime Numbers, Springer 2001.
Good luck!
Andreas Klappenecker
Department of Computer Science
Texas A\&M University
Office: HRBB 509B

