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Preface

Quantum computing provides a fresh perspective on information processing.
Some quantum algorithms have the promise to possibly provide an exponen-
tial speed-up over classical deterministic and randomized algorithms, which
explains the massive worldwide efforts to build a viable quantum computer.
However, this is by no means the only motivation. Quantum computing has
serious repercussions on classical computing as well.

These lecture notes provide a rapid introduction to the main ideas behind
quantum algorithms. The subject matter is not difficult, but dramatically
different from its classical counterpart. We provide numerous very simple
exercises that are designed to ease the transition into the quantum realm.
Solving the exercises will help to gain an active working knowledge.

Our approach is largely based on the quantum circuit model, which is
easy to understand. This model abstracts from the nature and the dynamics
of the physical system realizing the quantum computer. The advantage of this
approach is that within an extremely short period of time it will be possible
to cover interesting algorithms.

The course requires some background in linear algebra. The books Linear

Algebra by Serge Lang and Linear Algebra Done Right by Sheldon Axler are
excellent sources to review such material.

Please note that this is a preliminary draft. The lecture notes are incom-
plete, and all parts are subject to change. The material should be read in
conjuction with the books Quantum Computation and Quantum Information

by Michael Nielsen and Isaac Chuang and Classical and Quantum Computa-

tion by Alexei Kitaev, A.H. Shen, and M.N. Vyalyi.
If you read these notes, then you have accepted a contract: you agree to

communicate all errors to me. If you do not want to burden yourself with this
task, then do not read further.

Andreas Klappenecker
College Station, Texas
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Chapter 2

Quantum Circuits

Quantum computing can be based on various different computational models.
The most accessible one is the quantum circuit model, which specifies a se-
quence of operations that manipulate the state of the quantum computer at
discrete time steps. The basic rules of this model are surprisingly simple. This
chapter introduces the basic properties of quantum states, quantum gates, and
measurements.

§1 Quantum States

A bit has two distinguishable states, denoted by 0 and 1. A classical computer
manipulates a set of bits, which form the memory of the computer. The
memory of a quantum computer is based in a similar way on the notion of a
quantum bit, qubit for short. A qubit has two clearly distinguishable states,
denoted by |0〉 and |1〉. The possible states of a qubit are not exhausted by
these two possibilities. In general, the state of a qubit is of the form a|0〉+b|1〉,
where a and b are complex numbers satisfying |a|2 + |b|2 = 1.

The states |0〉 and |1〉 should be understood as basis vectors of a complex
two-dimensional vector space. We can associate with these states the basis
vectors

|0〉 =

(

1
0

)

, |1〉 =

(

0
1

)

. (2.1)

The state a|0〉 + b|1〉 is a linear combination of these two basis vectors, and
is represented by the vector (a, b)t. The operations of the quantum computer
manipulate these vectors by linear transformations or by measurements.

The value of a quantum bit is always 0 or 1, never anything else. If a qubit
is in the state a|0〉 + b|1〉, then this means that the value 0 is observed with

1



2 CHAPTER 2. QUANTUM CIRCUITS

probability |a|2, and the value 1 with probability |b|2. A measurement in the
computational basis returns the value 0 or 1 according to this rule, and sets
the qubit to the state |0〉 or |1〉, respectively. A consequence is that if the
measurement is repeated, then it will return the same value.

It is easy to construct a state that yields a fair coin-flip. Choose the state
1√
2
|0〉 + 1√

2
|1〉. Then 0 and 1 are both observed with probability (1/

√
2)2 =

1/2. The resulting state after the measurement is |0〉, if the measurement
result was 0, and |1〉 otherwise.

Exercise 2.1 Assume that a qubit is in the state 1√
10
|0〉 + 3√

10
|1〉. What is

the probability to observe 0, or 1, respectively?

Exercise 2.2 Assume that a qubit is in the state i√
2
|0〉− 1√

2
|1〉. What is the

probability to observe 0, or 1, respectively?

A memory consisting of n quantum bits has 2n basis states, which are de-
noted by |0 · · · 00〉, |0 · · · 01〉, |0 · · · 10〉, . . . , |1 · · · 11〉. The state of the memory
is a linear combination of these basis states. Denote by F2 the finite field with
two elements 0 and 1. An arbitrary state of the memory is of the form

∑

k∈F
n

2

ak|k〉, with
∑

|ak|2 = 1.

If we read out the memory by a measurement in the computational basis, then
we will observe the result k, a string of n bits, with probability |ak|2. The scalar
coefficients ak are called probability amplitudes or, simply, amplitudes.

Exercise 2.3 What is the probability of observing 11, if the memory is in
the state 1

2
|00〉 − 1

2
|10〉 + i√

2
|11〉? In what state is the memory once we have

observed 11?

Exercise 2.4 Describe all possible states of a system of two quantum bits
such that a measurement in the computational basis yields 00 with probability
1/2, and the results 01 and 11 both with probability 1/4.

Any quantum system with at least two different basis states can basically
store a quantum bit, and finding appropriate storage media for a quantum
computer is a very active area of current research. The linear combination
of basis states reflects the superposition principle of quantum mechanics. It
should be noted that only the measurement process introduces randomized
behavior in quantum algorithms. All other operations of a quantum computer
are completely deterministic.
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§2 A Single Quantum Bit

The operations of a quantum computer allow reading, writing, or manipulat-
ing the content of the memory, and therefore serve the same purpose as the
operations of a classical computer. The main distinction is that the opera-
tions of a quantum computer are formulated to be conformant with the laws
of quantum mechanics. We explain in this section the basic operations on a
single quantum bit, and introduce some convenient notations.

The input operation of a quantum computer can prepare the memory in
any basis state. As a result, each quantum bit is either in the state |0〉 or
in the state |1〉, but not in a superposition of these basis states. The actual
computation is done by applying simple operations, called quantum gates,
which allow to manipulate the content of the memory. The result of the
computation is determined by measurement operations.

If the memory consists of a single quantum bit, then the operations are
particularly easy to understand. We recall some mathematical vocabulary to
ease our discussion. If x = (xm−1, . . . , x0)

t and y = (ym−1, . . . , y0)
t are vectors

in Cm, then

〈x|y〉 = xm−1ym−1 + · · ·+ x0y0

defines a hermitian product. We follow the convention that hermitian prod-
ucts are anti-linear in the first argument, and linear in the second.

Exercise 2.5 Show that the hermitian product is positive definite, that is,
〈x|x〉 ≥ 0 for all x ∈ Cm, and 〈x|x〉 > 0 if x 6= 0.

If x ∈ Cm, then the norm of x is defined by ‖x‖ =
√

〈x|x〉. A vector x
with norm ‖x‖ = 1 is called a unit vector. Let U : Cm → Cm be a linear
map. If 〈Ux|Uy 〉 = 〈x|y〉 holds for all x, y ∈ Cm, then U is called unitary.

Exercise 2.6 Show that a complex m×m matrix U is unitary if and only if
U−1 = U

t
; that is, the inverse of a unitary matrix is obtained by transposing

the matrix and conjugating the matrix entries.

Exercise 2.7 A quantum state is a unit vector. Show that if a linear map M
maps each unit vector x ∈ Cm to a unit vector Mx, then M has to be unitary.
This property explains the relevance of unitary maps in quantum computing.

Exercise 2.8 Let {u0, . . . , um−1} and {v0, . . . , vm−1} be orthonormal bases
of Cm. Let U be a linear map such that vi = Uui for i = 0, . . . ,m− 1. Show
that U is unitary.
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We have now the terminology to describe the operations on a single quan-
tum bit. A quantum gate changes the state of a single qubit by applying
an arbitary unitary map U . We use the following graphical notation for such
a quantum gate:

U

The horizontal line represents the evolution of the quantum bit over time.
The time flow is from left to right. The box represents a quantum gate, which
applies a unitary map U to the state of the qubit.

The quantum gate is unitary, hence, in particular, linear. This means that
the action of the gate is completely determined by its behavior on the base
states |0〉 and |1〉. Suppose that the quantum gate U changes the input state
|0〉 to m00|0〉 + m10|1〉 and the input |1〉 to m01|0〉 + m11|1〉. If the input is a
linear combination a|0〉+ b|1〉, then the gate U will change this state to

a (m00|0〉 + m10|1〉) + b (m01|0〉+ m11|1〉)
= (am00 + bm01)|0〉+ (am10 + bm11)|1〉.

The result of this computation can be expressed in the standard basis (2.1)
by the following matrix vector product:

(

am00 + bm01

am10 + bm11

)

=

(

m00 m01

m10 m11

)(

a
b

)

.

The most familiar example is given by a not gate, which changes |0〉 to |1〉
and vice versa. This quantum gate can be described by the unitary matrix

X =

(

0 1
1 0

)

.

If we apply this quantum gate twice, then we recover the input. Graphically,
we obtain the rule

X X =

Another operation on one quantum bit is given by the Hadamard gate

H =
1√
2

(

1 1
1 −1

)

.

This operation has the following effect:

H|0〉 =
1√
2
|0〉 +

1√
2
|1〉 and H|1〉 =

1√
2
|0〉 − 1√

2
|1〉.
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Exercise 2.9 Calculate H(H|0〉) and H(H|1〉) by evaluating the expressions
in parentheses. Use linearity to obtain the result. Compare your result to the
matrix H2.

The product of two unitary matrices is a unitary matrix. Therefore, in-
stead of applying gate A and then gate B, we can apply a single quantum
gate BA. This way we obtain the rule

A B = BA

The order of the matrices changes because the time flow in a quantum circuit
is from left to right. However, the matrices act on column vectors; hence,
applying BA means that A is applied first.

Exercise 2.10 Simplify the circuit, and determine a single unitary matrix Z
that is the result of applying the Hadamard gate H, then the not gate X,
then again the Hadamard gate H:

H X H = Z

Exercise 2.11 Find a unitary 2× 2 matrix R such that

R R = X

In other words, R should satisfy R2 = X.

Numerous other unitary matrices are used in quantum algorithms. The
rotation matrices

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

,

and the Pauli matrices σx, σy, and σz are popular choices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

Exercise 2.12 Show that the product of any two Pauli matrices is – up to
a multiplication by a scalar – either a Pauli matrix or the identity matrix.
Memorize the definition of the Pauli matrices.
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An output is obtained by measuring the state of the quantum bit. The
measurement operation of a quantum bit in the state a|0〉 + b|1〉 yields
output 0 with probability |a|2, and output 1 with probability |b|2. The state
is, in general, changed by the measurement operation. If 0 is observed, then
the state is set to |0〉, and if 1 is observed, then the state is set to |1〉. We
depict a measurement of the quantum bit by a meter sign:

The operations obtained so far allow us to derive a quantum circuit simu-
lating an unbiased coin flip. This circuit produces output 0 with probability
1/2, and output 1 with probability 1/2. We initialize the quantum bit with
the state |0〉, then apply the Hadamard gate, and measure the result:

|0〉 H

The Hadamard gate changes the state to 1√
2
|0〉 + 1√

2
|1〉; hence, the measure-

ment produces the output with the desired probability.

Exercise 2.13 Design a quantum circuit that simulates a biased coin flip.
The circuit should produce output 0 with probability 1/3, and output 1 with
probability 2/3.

§3 Quantum Gates

We need operations that enable the interaction between different quantum
bits. The xor gate or controlled-not gate acts on two distinct quan-
tum bits. Suppose that the memory contains two quantum bits, then the
controlled-not gate operates on the basis states of the system as follows:

|00〉 7→ |00〉,
|01〉 7→ |01〉,
|10〉 7→ |11〉,
|11〉 7→ |10〉.

If we extend this operation linearly, then the quantum state

a00|00〉 + a01|01〉 + a10|10〉+ a11|11〉

will be mapped by this controlled-not gate to

a00|00〉 + a01|01〉+ a10|11〉 + a11|10〉.
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Exercise 2.14 The xor gate is a unitary map. Determine the associated
unitary matrix with respect to the computational basis |00〉, |01〉, |10〉, |11〉.
Choose the basis vectors in this order.

Exercise 2.15 Suppose that a controlled-not gate is applied to the state
1

2
|00〉+ 1

2
|10〉+ 1√

2
|11〉. What is the resulting state?

Controlled-not gates can be generalized to an arbitrary number n ≥ 2 of
quantum bits. A controlled-not gate with control bit at position i and
target bit at position j 6= i is a unitary map, which is determined by

|xn−1 · · · x1x0〉 7→ |yn−1 · · · y1y0〉,

where xk and yk are elements of {0, 1}, such that xk = yk for all k 6= j, and
the target bit yj = xi ⊕ xj is the result of adding xi to xj modulo 2. We
denote this controlled-not gate by Λi,j(X).

A controlled-not gate Λ1,0(X) acting on two quantum bits is depicted in
the graphical notation for quantum gates by

The two horizontal lines represent the two quantum bits. The most significant
bit (the bit at position 1) is shown on top, and the least significant bit (the
bit at position 0) is shown at the bottom. The black dot • depicts the control
bit of the quantum gate, and the crossed circle ⊕ depicts the target bit.

To illustrate, assume that we have three quantum bits, which are initially
in the state

1

2
|001〉 +

1√
2
|110〉 +

1

2
|111〉.

Suppose that this state is processed by the quantum circuit

The time flow is from left to right. The first controlled-not gate Λ2,1(X)
negates the quantum bit in the middle, if the most significant bit is set. The
resulting intermediate state after applying the first controlled-not gate is

1

2
|001〉 +

1√
2
|100〉 +

1

2
|101〉.



8 CHAPTER 2. QUANTUM CIRCUITS

The second controlled-not gate Λ0,2(X) is controlled by the least significant
bit, and the target bit is the most significant bit. The intermediate state is
changed by this controlled-not gate to

1

2
|101〉 +

1√
2
|100〉 +

1

2
|001〉.

Exercise 2.16 Design a quantum circuit consisting of controlled-not gates,
which realizes the unitary map

|00〉 7→ |00〉, |01〉 7→ |10〉, |10〉 7→ |01〉, |11〉 7→ |11〉.

We relegate the discussion of further multi-qubit operations to the next
chapter. We focus instead on operations, which act locally on a single quantum
bit. It turns out that single-qubit operations and controlled-not gates allow
to fully program a quantum computer. Therefore, all other operations can be
expressed in terms of these elementary operations. We make a digression and
explain tensor products, which provide the proper framework to understand
the data structure of the memory.

Let V and W be finite-dimensional complex vector spaces. The tensor
product V ⊗W is a vector space, which is spanned by linear combinations of
elements v ⊗ w such that v ∈ V and w ∈ W . The product v ⊗ w is defined
such that it satisfies the additive relations

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w (2.2)

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗w2 (2.3)

and the balancing relations

c(v ⊗ w) = (cv) ⊗ w = v ⊗ (cw) (2.4)

for each v, v1, v2 in V , each w,w1, w2 in W , and each complex number c.
We can formally construct this vector space V ⊗ W as follows. Form

the vector space A of all linear combinations of elements (v, w) with v ∈ V
and w ∈ W . Consider the subspace B of A, which consists of all linear
combinations of the elements

(v1 + v2, w)− (v1, w)− (v2, w),
(v, w1 + w2)− (v, w1)− (v, w2),

c(v, w) − (cv, w), c(v, w) − (v, cw),

for v, v1, v2 ∈ V , w,w1, w2 ∈ W , and c ∈ C. We define the tensor product
V ⊗W to be the quotient space A/B. The image of the element (v, w) of A
in V ⊗W is denoted by v ⊗ w.
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We emphasize that not every element of V ⊗ W is of the form v ⊗ w for
some v ∈ V and w ∈ W . However, every element of V ⊗W can be expressed
as a sum

∑

i,j vi ⊗ wj of such tensor products, with vi ∈ V and wj ∈ W .

Exercise 2.17 Give an example of a vector in C2⊗C2 that cannot be written
in the form v ⊗ w with v, w ∈ C2. Prove your result.

It might be helpful to re-iterate the construction. We started with two
finite-dimensional vector spaces V and W . We constructed a giant vector
space A with basis {(v, w) | v ∈ V,w ∈ W}. The generators of B were chosen
such that the quotient space V ⊗W = A/B satisfies the relations (2.2)–(2.4).
It is easy to see that V ⊗W = A/B is a finite-dimensional vector space, even
though A and B are infinite-dimensional.

Exercise 2.18 Let V and W be complex finite-dimensional vector spaces.
Let {e1, . . . , em} be a basis of V and {f1, . . . , fn} be a basis of W . Show that
{ei ⊗ fj | 0 ≤ i < m, 0 ≤ j < n} generates V ⊗W .

The exercise shows that dim(V ⊗W ) ≤ dim(V ) dim(W ). In fact, it is possi-
ble to show that equality holds, which proves that the generating set in the
previous exercise is a basis of V ⊗W .

Let V and W be as in Exercise 2.18. Suppose that A is a linear map on V ,
and B is a linear map on W . Let A ⊗ B denote the linear map on V ⊗ W ,
which is determined by

(A⊗B)(ei ⊗ fj) = Aei ⊗Bfj.

This uniquely determines the values of A ⊗ B on other elements of V ⊗ W
because the elements ei ⊗ fj are a basis.

Exercise 2.19 Let A and B be the matrices

A =

(

a00 a01

a10 a11

)

, B =

(

b00 b01

b10 b11

)

representing linear maps with respect to the basis {e0, e1}. Determine the
matrix A⊗B with respect to the basis {e0 ⊗ e0, e0 ⊗ e1, e1 ⊗ e0, e1 ⊗ e1}.

The tensor product plays a significant role in quantum computing. Recall
that the state space of a single quantum bit is given by C2. In quantum
mechanics, the state space of a joint quantum system is described by the
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tensor product of the state spaces of its parts. Consequently, a compound
system of n quantum bits has the state space

C2 ⊗ · · · ⊗C2 (n factors).

This is a 2n-dimensional complex vector space, hence isomorphic to C2n

. The
isomorphism is explicitly given by the linear map

|xn−1〉 ⊗ · · · ⊗ |x1〉 ⊗ |x0〉 7−→ |xn−1 · · · x1x0〉,

where xi ∈ {0, 1}, 0 ≤ i < n. We will use this isomorphism freely, and switch
from one representation to the other, whichever is more convenient. We will
silently identify the two notations and write |00〉 = |0〉 ⊗ |0〉, etc.

Exercise 2.20 By convention, the basis vectors associated with the basis |0〉
and |1〉 of C2 are

|0〉 =

(

1
0

)

, |1〉 =

(

0
1

)

.

Derive the vectors of C4 ∼= C2 ⊗C2 associated with

|00〉 = |0〉 ⊗ |0〉, |01〉 = |0〉 ⊗ |1〉, |10〉 = |1〉 ⊗ |0〉, |11〉 = |1〉 ⊗ |1〉.

Exercise 2.21 Which vector is associated with (a0|0〉+a1|1〉)⊗(b0|0〉+b1|1〉),
assuming the above convention for the basis vectors?

Suppose we have a memory with n quantum bits. Let U be a unitary
2 × 2 matrix. We define a single-qubit gate U acting on the quantum bit
at position i to be the unitary map 12n−i−1 ⊗ U ⊗ 12i . Alternatively, one can
describe the action of the gate by

|xn−1〉 ⊗ · · · ⊗ |xi〉 ⊗ · · · ⊗ |x0〉 7→ |xn−1〉 ⊗ · · · ⊗ U |xi〉 ⊗ · · · ⊗ |x0〉,

where xi ∈ {0, 1}, 0 ≤ i < n. All tensor components remain unchanged with
the exception of |xi〉, which is replaced by U |xi〉.

Let us illustate this definition in the case of two quantum bits. Suppose
that we apply the Hadamard gate H on the least significant bit, that is, the
gate acts on the quantum bit at position i = 0. The unitary map associated
with this gate is represented by the matrix

12 ⊗H ⊗ 11 = 12 ⊗H =
1√
2









1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1









. (2.5)
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This matrix is the tensor product of the identity matrix 12 and the Hadamard
matrix H.

The alternative description is even easier to grasp. Indeed, the state |00〉 =
|0〉 ⊗ |0〉 is mapped to

|0〉 ⊗H|0〉 = |0〉 ⊗ (
1√
2
|0〉+

1√
2
|1〉) =

1√
2
|0〉 ⊗ |0〉+

1√
2
|0〉 ⊗ |1〉.

Note that this vector corresponds to the first column of the matrix (2.5). The
state |01〉 = |0〉 ⊗ |1〉 is mapped to

|0〉 ⊗H|1〉 = |0〉 ⊗ (
1√
2
|0〉 − 1√

2
|1〉) =

1√
2
|0〉 ⊗ |0〉 − 1√

2
|0〉 ⊗ |1〉,

and corresponds to the second column of the matrix (2.5). The result of the
input |10〉 and |11〉 is obtained in a similar way, and we leave these two cases
to the reader.

Exercise 2.22 Suppose that the memory consists of two qubits. Determine
the matrix corresponding to the Hadamard gate acting on the most significant
qubit.

The graphical notation for single-qubit gates is similar to the single quan-
tum bit case. A single-qubit gate U acting on the least significant bit in a
system of two quantum bits is depicted by

U

Exercise 2.23 Determine the action of the circuit

H

on the input |00〉, |01〉, |10〉, |11〉. Explain why the resulting states form an
orthonormal basis.

§4 Measurements

We need to have a way to obtain the value of a quantum bit. The quantum
circuit model allows measuring an individual quantum bit with respect to the
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computational basis. We define these measurement operations in this section
and discuss some possible extensions.

Assume that we have a memory consisting of n quantum bits. Suppose
that the memory is in the quantum state

v =
∑

x∈F
n

2

ax|x〉, ax ∈ C.

The state vector v is, as always, assumed to be of unit norm, ‖v‖ = 1. A
measurement of the quantum bit at position i yields the result k ∈ {0, 1}
with probability

∑

x∈F
n

2
with xi=k

|ax|2.

The measurement changes, in general, the state vector. If k is observed, then
the resulting state of the memory is given by 1

‖vk‖vk, where

vk =
∑

x∈F
n

2
with xi=k

ax|x〉.

Let us illustrate the effect of this operation in the case of two quantum
bits. Suppose that the memory is in the state

v =
1

2
|00〉 +

1√
2
|10〉 +

1

2
|11〉.

If we measure the qubit at position i = 0, then we will observe 0 with prob-
ability (1/2)2 + (1/

√
2)2 = 3/4, and 1 with probability (1/2)2 = 1/4. Note

that v0 = 1

2
|00〉+ 1√

2
|10〉 and v1 = 1

2
|11〉. Therefore, if we observe 0, then the

memory will be in the state

1

‖v0‖
v0 =

2√
3
v0 =

1√
3
|00〉 +

2√
6
|10〉,

and if we observe 1, then the memory will be in the state

1

‖v1‖
v1 = 2v1 = |11〉.

Exercise 2.24 Let v = 1

3
|00〉 +

√
3

3
|01〉 +

√
5

3
|10〉. If we measure the least

significant bit, what is the probability to observe 0, respectively 1? Determine
the resulting states v0 and v1 of the memory.
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The graphical notation for a measurement is the meter sign. For instance,
the measurement of the least significant quantum bit is depicted by

The reader familiar with quantum mechanics will notice that many more
types of measurements are, in principle, possible. However, the practical ways
to measure quantum bits are typically rather limited. Although quantum
physics allows us to measure with respect to any orthonormal basis, we limit
ourselves here to the computational basis. If we could perform a measurement
with respect to a totally arbitrary orthonormal basis, then there would be no
need for quantum gates. The quantum algorithm would then simply consist
of a measurement in the appropriate basis.

§5 Examples

We give in this section some tiny examples, which illustrate the notions that
we have introduced so far. We will mainly discuss some small quantum cir-
cuits, which do not necessarily have any purpose other than illustrating the
effect of quantum operations. The superficial examples given here allow us,
nonetheless, to illustrate some common tricks of the trade. We will discuss
some more meaningful examples in the next chapter.

Example 1. The first example illustrates how the Hadamard gates can be
used to generate quickly a superposition of all possible input states. Suppose
that the Hadamard gate is applied to both quantum bits, first on the least
significant bit, then on the most significant bit:

H

H

Therefore, the action on the state vector is given by (H⊗12)(12⊗H). Suppose
that the input is |00〉 = |0〉 ⊗ |0〉. The intermediate state after applying the
first gate is

|0〉 ⊗H|0〉 = |0〉 ⊗ (
1√
2
|0〉 +

1√
2
|1〉).

The final state after applying the second gate is

H|0〉 ⊗ (
1√
2
|0〉+

1√
2
|1〉) = (

1√
2
|0〉+

1√
2
|1〉) ⊗ (

1√
2
|0〉+

1√
2
|1〉).
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We can expand the right hand side using the bilinear relations of the tensor
product, and obtain the simpler form

1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉.

We could have obtained the same result by applying the gate on the most
significant qubit first, and then the gate on the least significant bit; or even
by applying both gates at the same time.

Exercise 2.25 Suppose that A1 and B1 are n× n matrices, and A2 and B2

are m×m matrices. Show that (A1 ⊗A2)(B1 ⊗B2) = (A1B1)⊗ (A2B2).

A consequence of this exercise is that if we have two quantum gates, which
affect disjoint sets of quantum bits, then we can execute these gates in arbitary
order. Indeed, we have (A⊗ 1m)(1n ⊗B) = (1n ⊗B)(A⊗ 1m). We can even
execute these operations in parallel, because (A ⊗ 1m)(1n ⊗ B) = A ⊗ B.
Therefore, gates acting on different quantum bits are often denoted on top
of each other, as shown on the right, to make the graphical notation more
compact:

A

B
=

B

A
=

A

B

These rules are also useful when one attempts to simplify quantum circuits.
Example 2. Engineering a specific quantum state is a frequent subtask

in the design of quantum algorithms. For instance, suppose that we need to
prepare four quantum bits in the state

1√
2
|0000〉 +

1√
2
|1111〉.

Assume that the quantum bits are initially in the state |0000〉. We can apply
the Hadamard gate on the most significant qubit to obtain the state

1√
2
|0000〉 +

1√
2
|1000〉.

Applying controlled-not gates on the three least significant qubits as target
qubits, with the most significant bit as a control bit, yields the desired state

1√
2
|0000〉 +

1√
2
|1111〉.
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Indeed, if we apply the three controlled-not gates to the state |0000〉, then
this state remains unchanged, and if we apply the three controlled-not gates
to |1000〉, then we get |1111〉; the result follows by linearity of the quantum
gates. In graphical notation, the quantum circuit is given by

H

Exercise 2.26 Design a quantum circuit that prepares the superposition of
all basis states with even parity for a system of three quantum bits, namely
the state

1

2
|000〉 +

1

2
|011〉 +

1

2
|101〉 +

1

2
|110〉.

Assume that the memory is initially in the state |000〉.

Example 3. Suppose that we have a boolean function f : Fn
2
→ F2. A

quantum circuit implementing f has to be realized by a unitary map. This
can be accomplished, for instance, by implementing the map

|y〉 ⊗ |x〉 7→ |y ⊕ f(x)〉 ⊗ |x〉

on n + 1 qubits, where x ∈ Fn
2
, and y ∈ F2. The most significant bit is the

output bit, and the n lowest significant bits are the input bits. The result of
f(x) is added modulo 2 to the output bit. The result is a quantum circuit of
the form

|x〉

|y〉

...
f ... |x〉

|y ⊕ f(x)〉

The linearity of the circuit allows to evaluate f for any linear combination of
the basis states. Assume that all n+1 quantum bits are initialized with state
|0〉. We apply the Hadamard gate to all n input bits. The resulting state is

1√
2n

∑

x∈F
n

2

|0〉 ⊗ |x〉,
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a superposition of all possible inputs. If we apply the circuit implementing
the function f , then we obtain as a result

1√
2n

∑

x∈F
n

2

|f(x)〉 ⊗ |x〉.

Thus, the circuit evaluates the function f for all possible inputs at once.

Exercise 2.27 Design a quantum circuit that implements the parity function
f(x2, x1, x0) = x2 ⊕ x1 ⊕ x0. Show how this circuit can be used to generate
the state

§6 Summary

The state space of a memory with n quantum bits is given by the complex
vector space C2n ∼= C2 ⊗ · · · ⊗C2. We choose, once and for all, a fixed
orthonormal basis of this vector space, and call it the computational ba-
sis. Its basis vectors are denoted by |0 · · · 00〉, |0 · · · 01〉, · · · , |1 · · · 11〉. An
arbitrary state of the memory is of the form

∑

x∈F
n

2

ax|x〉, where
∑

x∈F n

2

|ax|2 = 1. (2.6)

A measurement of the quantum bit at position i yields the result k ∈ {0, 1}
with probability

∑

xi=k |ax|2. If k is observed, then the resulting state after

the measurement is 1

‖vk‖vk, where vk denotes the vector

vk =
∑

x∈F
n

2
,xi=k

ax|x〉.

A single-qubit gate is determined by a matrix U ∈ U(2) and a bit po-
sition i. Such a gate modifies the state of the memory by applying the
unitary matrix 12n−i−1⊗U⊗12i . A controlled-not gate Λi,k(X) is specified
by its action on the basis vectors

Λi,k(X)|xn−1 · · · x1x0〉 = |yn−1 · · · y1y0〉,

where yj = xj for all j 6= k, and yk = xi ⊕ xk.


