
Chapter 3

Algorithmic Appetizers

In this chapter, we discuss three small algorithms. The examples illustrate
the operations that we introduced in the previous chapter. We begin with a
communication protocol, which allows to communicate the state of a single
quantum bit. This process is known as teleportation, a somewhat ambitious
name for a simple protocol.

§1 Teleportation

Suppose that Alice wants to communicate the state of a quantum bit to Bob.
The matter is complicated by the fact that the quantum state might not be
known to her. This would not help her much anyway, since, in most cases,
she would not be able to communicate a complete description of the state by
classical communication alone.

Alice and Bob need, in addition to classical communication, another re-
source. If Alice and Bob share a pair of quantum bits, which are in the state

1√
2
|00〉+

1√
2
|11〉, (3.1)

then it is not difficult to communicate the unknown quantum state, as we will
show in this section. This method has been suggested by Bennett, Brassard,
Crepeau, Josza, Peres, and Wootters in 1993, and is known as teleportation.
This type of teleportation has been demonstrated in several experiments.

We need three quantum bits in the teleportation protocol. We assume
that the two most significant qubits belong to Alice, and the least significant
qubit belongs to Bob. Alice wants to communicate the most significant bit to
Bob. We assume that this quantum bit is in the state a|0〉 + b|1〉, but Alice
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18 CHAPTER 3. ALGORITHMIC APPETIZERS

might not be aware of that, and the least two qubits are in the state (3.1).
Therefore, the system is initially in the state

(a|0〉 + b|1〉)⊗ (
1√
2
|00〉 +

1√
2
|11〉). (3.2)

We assume that Alice and Bob are located far apart. They can apply op-
erations locally on the qubits in their possession and communicate over the
phone. The teleportation is surprisingly simple. Alice applies a controlled-not
operation Λ2,1(X), and a Hadamard gate to the most significant bit. Then
she measures her quantum bits, and tells Bob what kind of gate he should
apply to his quantum bit.

Alice

Alice

Bob

H

Apply
corrections

The controlled-not gate Λ2,1(X) transforms the state (3.2) to

a|0〉 ⊗ (
1√
2
|00〉 +

1√
2
|11〉) + b|1〉 ⊗ (

1√
2
|10〉+

1√
2
|01〉).

Applying the Hadamard gate on the most significant qubit yields the state

a( 1
√

2
|0〉+ 1

√

2
|1〉)⊗ ( 1

√

2
|00〉+ 1

√

2
|11〉)

+ b( 1
√

2
|0〉 − 1

√

2
|1〉)⊗ ( 1

√

2
|10〉+ 1

√

2
|01〉).

The bilinear relations of the tensor product allow this state to be rewritten as
follows:

a(1
2 |000〉 + 1

2 |011〉 + 1
2 |100〉 + 1

2 |111〉)
+b(1

2 |001〉 + 1
2 |010〉 − 1

2 |101〉 − 1
2 |110〉).

We collect the terms with the same two most significant qubits, and use the
bilinear relations of the tensor product to express this state in yet another,
but still equivalent, form:

1

2

(

|00〉 ⊗ (a|0〉+ b|1〉) + |01〉 ⊗ (a|1〉+ b|0〉)
+|10〉 ⊗ (a|0〉 − b|1〉) + |11〉 ⊗ (a|1〉 − b|0〉)

)

.
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Alice finally measures the two most significant qubits. The different measure-
ment results and corresponding post-measurement states are shown in the
following table:

Observation Resulting State Alice tells Bob

00 |00〉 ⊗ (a|0〉 + b|1〉) to do nothing
01 |01〉 ⊗ (a|1〉 + b|0〉) to apply X
10 |10〉 ⊗ (a|0〉 − b|1〉) to apply Z
11 |11〉 ⊗ (a|1〉 − b|0〉) to apply ZX

We note that the resulting state after the measurement can be transformed in
each case into a state of the form |x2x1〉 ⊗ (a|0〉 + b|1〉), with xi ∈ {0, 1}, by
applying the single-qubit gate recommended by Alice. We have accomplished
our goal: Alice has successfully communicated the state a|0〉+ b|1〉 to Bob.

Entanglement. Let Cn and Cm be state spaces of two quantum systems.
A state of Cn ⊗Cm that can be written in the form v ⊗ w, for some v ∈ Cn

and w ∈ Cm, is called decomposable. If a state is not decomposable, then
it is called an entangled state. Teleportation and many other protocols in
quantum computing use entanglement as a resource.

Exercise 3.1 Show that the state (3.1) is an entangled state.

There exists a simple criterion that allows us to decide whether an arbitrary
state in C2⊗C2 is entangled or not. We have to check only a single invariant
of the state to decide this question.

Exercise 3.2 Prove that the state |ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉 is
decomposable if and only if the coefficients satisfy αδ − βγ = 0.

The state (3.1) is called an Einstein-Podolsky-Rosen state, or EPR

state for short. This state received considerable attention after the famous
critique on quantum mechanics by Einstein, Podolsky, and Rosen; particularly
in Bohm’s interpretation. However, there is nothing sacred about this state,
and it is, of course, possible to use other entangled states for teleportation.

Exercise 3.3 Suppose that Alice and Bob share the state 1
√

2
|00〉 + eiθ

√

2
|11〉,

θ ∈ R. Assume that Alice wants to use her teleport circuit to communicate
an unknown state a|0〉 + b|1〉 of some quantum bit to Bob. Assuming that
they both know θ, what kind of operations does Bob have to apply when he
learns Alice’s measurement results? Derive all steps carefully.
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If the state shared by Alice and Bob is not entangled, then teleportation is not
possible. However, not every entangled state can be used in for teleportation.
We will show later that the shared state has to be a so-called maximally
entangled state.

Extensions. Suppose that Alice wants to communicate the state of a sys-
tem of several quantum bits to Bob. Can she teleport one qubit at a time?
We contend that this is the case. To prove this claim, we assume that Alice
has n+ 1 quantum bits, which are in the state

2n
−1

∑

k=0

1
∑

j=0

akj|k〉 ⊗ |j〉 ∈ C2n ⊗C2. (3.3)

If Alice wants to communicate this state to Bob using the teleportation pro-
tocol, then she needs to share n+ 1 EPR pairs with Bob. It would be tedious
to give a direct proof that this approach works. We show instead that tele-
portation is faithful in the following sense: If Alice teleports a single qubit,
then Alice’s remaining n qubits, and the qubit that Bob has received, are in
the state (3.3), and these n + 1 qubits are not entangled with the remaining
part of the system. It follows that we can teleport one qubit at a time.

It remains to show that the teleportation of one qubit will preserve the
state (3.3), except that one qubit is transferred from Alice to Bob. The intial
state of the system is

2n
−1

∑

k=0

1
∑

j=0

akj|k〉 ⊗ |j〉 ⊗ (
1√
2
|00〉 +

1√
2
|11〉).

Note that it suffices to consider one EPR state to teleport a single qubit. We
now repeat the exact same teleportation protocol as before. Intially, Alice
applies the controlled-not gates Λ2,1(X); this yields the state

2n
−1

∑

k=0

(

ak0|k〉 ⊗ |0〉 ⊗ (
1√
2
|00〉 +

1√
2
|11〉)

+ak1|k〉 ⊗ |1〉 ⊗ (
1√
2
|10〉 +

1√
2
|01〉)

)

.

Then she applies the Hadamard gate on the qubit at position 2, which yields
the state

2n
−1

∑

k=0

(

ak0|k〉 ⊗
1

2
(|0〉 + |1〉)⊗ (|00〉 + |11〉)

+ak1|j〉 ⊗
1

2
(|0〉 − |1〉)⊗ (|10〉 + |01〉)

)

.
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We want to measure the qubits at positions 1 and 2. We use the bilinear
relations of the tensor product to rewrite this state in the more convenient,
but equivalent, form

2n
−1

∑

k=0

1

2

(

|k〉 ⊗ |00〉 ⊗ (ak0|0〉+ ak1|1〉)
+|k〉 ⊗ |01〉 ⊗ (ak0|1〉+ ak1|0〉)
+|k〉 ⊗ |10〉 ⊗ (ak0|0〉 − ak1|1〉)
+|k〉 ⊗ |11〉 ⊗ (ak0|1〉 − ak1|0〉)

)

.

Suppose that Alice measures the qubits at positions 2 and 1. If she observes
x2 and x1, respectively, and informs Bob to apply Zx2Xx1 , then after applying
Bob’s correction operations, we get

2n
−1

∑

k=0

1
∑

j=0

|k〉 ⊗ |x2x1〉 ⊗ akj|j〉 =
2n
−1

∑

k=0

1
∑

j=0

akj|k〉 ⊗ |x2x1〉 ⊗ |j〉.

We note that Alice’s n most significant qubits, and Bob’s least significant
qubit are in the state (3.3), and that these qubits are not entangled with the
qubits at positions 1 and 2.

We can summarize our findings as follows: If Alice wants to communi-
cate the state of n + 1 quantum bits, then she can do that by applying the
teleportation protocol n+ 1 times. If the system is initially in the state

2n
−1

∑

k=0

1
∑

l=0

akj|k〉 ⊗ |j〉 ⊗
n

⊗

i=0

(
1√
2
|00〉+

1√
2
|11〉),

then after applying 2n+2 gate operations and 2n+2 measurements on Alice’s
side, and up to 2n+ 2 operations on Bob’s side, they manage to transfer the
state (3.3) to Bob.

Remark. Note that the protocol simply communicates quantum states,
and it does not teleport matter. You find many exaggerated conclusions in
publications about teleportation – watching episodes of Star Trek seems to
have side effects.

§2 Deutsch’s Problem

Suppose that you are given a black box that contains an implementation
of a boolean function f : F2 → F2. Your task is to determine the parity
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f(0)⊕ f(1), the sum of f(0) and f(1) modulo 2. The goal is to solve this task
with a minimal number of calls to the black box.

The classical solution to this problem requires two calls to the black box,
since the function might be constant or not. In the quantum version, you are
given an implementation of f as a quantum circuit on two quantum bits,

|x1〉 ⊗ |x0〉 7→ |x1〉 ⊗ |x0 ⊕ f(x1)〉, (3.4)

with x1, x0 ∈ F2 = {0, 1}. The quantum version can be solved with a single
call to the black box. The problem and its solution were suggested by Deutsch
in 1985; it is historically one of the first quantum algorithms.

Exercise 3.4 Give implementations of the quantum circuit (3.4) for the con-
stant functions (a) f(0) = f(1) = 0, and (b) f(0) = f(1) = 1, as well as for
the balanced functions (c) f(0) = 0, f(1) = 1, and (d) f(0) = 1, f(1) = 0.

Let B denote the unitary map on C4 determined by (3.4). We will derive
the solution in some small steps. It is clear that we have to take advantage
of the superposition principle to evaluate the boolean function simultaneously
for both possible input arguments. The solution to Deutsch’s problem uses
an additional trick, which allows us to encode the value of f(x) into a phase
factor. Suppose that the least significant bit is in the state 1/

√
2(|0〉 − |1〉),

then

B

(

|x1〉 ⊗
( 1√

2
|0〉 − 1√

2
|1〉

)

)

= |x1〉 ⊗
( 1√

2
|f(x1)〉 −

1√
2
|1⊕ f(x1)〉

)

=: vx1

for all x1 ∈ {0, 1}. If the value of f(x1) is zero, then the input state remains
invariant; otherwise, B affects a change of sign. Explicitly,

vx1
= (−1)f(x1)|x1〉 ⊗

( 1√
2
|0〉 − 1√

2
|1〉

)

.

We can now use the superposition principle. If we choose 1/
√

2(|0〉 + |1〉) for
the most significant qubit, then we obtain the result 1/

√
2(v0 + v1) since the

black box B is linear. To put this in a different way, we get

B

(

1

2
(|0〉 + |1〉)⊗ (|0〉 − |1〉)

)

=
1

2
((−1)f(0)|0〉 + (−1)f(1)|1〉) ⊗ (|0〉 − |1〉).

The goal was to discriminate between functions, which satisfy f(0)⊕f(1) = 0,
and functions satisfying f(0)⊕ f(1) = 1. The previous state is equivalent to











±1

2
(|0〉 + |1〉)⊗ (|0〉 − |1〉) if f(0)⊕ f(1) = 0,

±1

2
(|0〉 − |1〉)⊗ (|0〉 − |1〉) if f(0)⊕ f(1) = 1.
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If we apply the Hadamard gate on the most significant qubit, then we get











±|0〉 ⊗ 1√
2
(|0〉 − |1〉) if f(0)⊕ f(1) = 0,

±|1〉 ⊗ 1√
2
(|0〉 − |1〉) if f(0)⊕ f(1) = 1.

We measure the most significant qubit now. If the function in the black box
satisfies f(0) ⊕ f(1) = 0, then we will observe 0 with certainty. If f satisfies
f(0)⊕f(1) = 1, then we will observe 1. Note that the algorithm is completely
deterministic. We can summarize the algorithm that we have developed as
follows:

|0〉

|1〉 H

H
B

H

The reader should pause here for a moment and retrace each step in the
circuit diagram. The first two Hadamard gates prepare the superposition of
the input and the state which allows the encoding of the value of f(x) into a
phase factor.

§3 Hidden Subgroup Problems

Deutsch’s problem is an instance of a hidden subgroup problem. The hidden
subgroup problem is often considered as the Holy Grail of quantum computing
and has inspired a considerable amount of research. We need some terminology
before we can state this problem. Recall that a group is a non-empty set G
with a composition operation ◦ : G×G→ G, such that

G1 ((x ◦ y) ◦ z) = (x ◦ (y ◦ z)) holds for all x, y, z ∈ G;

G2 there exists an element e ∈ G such that e ◦ x = x ◦ e = x for all x ∈ G;

G3 for each x ∈ G, there exists an x−1 ∈ G such x ◦ x−1 = x−1 ◦ x = e.

Axiom G1 states that the composition is associative, and G2 that there exists
an identity (or neutral) element. Note that this identity element is uniquely
determined. The axiom G3 states that each element x in G has an inverse
element.
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Exercise 3.5 Show that (a) the integers Z with addition as composition is a
group; (b) the set Z/nZ = {0, · · · n− 1} of integers with addition modulo n is
a group; (c) the set GL(n,R) of all real invertible n× n matrices is a group
with matrix multiplications as composition. Explicitly determine the inverses
and the identity element in all cases.

A subset H of G is called a subgroup of G if and only if it forms a group
under the restriction of the composition ◦ to H. If S is a subset of G, then
〈S〉 denotes the smallest subgroup of G containing S. If there exists a finite
set S such that 〈S〉 = G, then G is called a finitely generated group.

Exercise 3.6 Determine all subgroups of the group Z/6Z.

Exercise 3.7 Determine which of the following groups are finitely generated:
(a) the additive group of integer Z, (b) the group Z/nZ. If possible, give an
explicit set of generators.

We can formulate the problem as follows:

The Hidden Subgroup Problem: Let f : G → X be a black
box function from a finitely generated group G to a finite set X
such that

f(x) = f(y) if and only if y−1x ∈ H, (3.5)

where H is some initially unknown subgroup of G. Your task is to
find a generating set S of H.

The hidden subgroup problem serves as a yardstick measuring the progress
in quantum computing. Various instances have been solved, and some see
numerous examples in the following chapters.

We have already mentioned that Deutsch’s problem can be viewed as a
special case of the hidden subgroup problem. Indeed, let the group G = Z/2Z
and the set X = Z/2Z. We have two possible subgroups of G, namely H =
{0, 1} andH = {0}. If the hidden subgroupH = {0}, then the constraint (3.5)
implies that f has to be a balanced function. If H = {0, 1}, then f has to be
a constant function.

Exercise 3.8 Assume that f : Z/4Z → Z/2Z is a black box function for a
hidden subgroup problem. Enumerate all potential hidden subgroups H of
G = Z/4Z that can be encoded by black box functions of this type.
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Exercise 3.9 Let f : Z/4Z → Z/2Z be a black box function for a hidden
subgroup problem. Assume that the black box is realized by a quantum
circuit, which implements the map |x1x0〉 ⊗ |y〉 7→ |x1x0〉 ⊗ |y ⊕ f(x1, x0)〉,
with x1, x0, y ∈ F2. We assume that the binary string x1x0 encodes the
number 2x1+x0. Design a quantum circuit, which solves this hidden subgroup
problem.

Almost all quantum algorithms that have an exponential speed-up over the
best classical algorithms known to date can be formulated as hidden subgroup
problems, or some closely related variation of this problem.

§4 A Small Search Algorithm

Suppose that we are given a black box function f : Fn
2 → F2 such that f(s) = 1

for some s ∈ F2
2, and f(x) = 0 otherwise. We want to find this element s

satisfying the search criterion f(s) = 1. Classically, we need to evaluate f(x)
more than two times to find s with probability greater than 1/2. We discuss
in this section a quantum algorithm that allows us to find s with probability
1 using a single evaluation of the black box function.

We assume that the black box function is given in form of a quantum
circuit, which realizes the unitary map Bf given by

|x1x0〉 ⊗ |y〉 7→ |x1x0〉 ⊗ |y ⊕ f(x1, x0)〉,

where x1, x0, y ∈ F2. We evaluate Bf on a superposition of all inputs, and
encode the result as a sign change. We accomplish this by initializing with
|0〉 ⊗ |0〉 ⊗ |1〉, and by applying Hadamard gates to all three qubits; these
operations generate the state

1

2
(|00〉 + |01〉 + |10〉 + |11〉) ⊗ 1√

2
(|0〉 − |1〉).

Applying Bf to this state yields one of the following four possible results:

f(s) = 1 resulting state

s = 00 1
2(−|00〉 + |01〉 + |10〉+ |11〉) ⊗ 1

√

2
(|0〉 − |1〉),

s = 01 1
2(|00〉 − |01〉 + |10〉 + |11〉) ⊗ 1

√

2
(|0〉 − |1〉),

s = 10 1
2(|00〉 + |01〉 − |10〉 + |11〉) ⊗ 1

√

2
(|0〉 − |1〉),

s = 11 1
2(|00〉 + |01〉 + |10〉 − |11〉) ⊗ 1

√

2
(|0〉 − |1〉).
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We note that the four states are orthogonal. Therefore, it is possible to find a
base change T transforming the two most significant qubits into the compu-
tational bases states. The coordinate transform is given by

T =
1

2









−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1









.

After this base change, we can measure the result in the computational basis.
The resulting circuit is

|0〉

|0〉

|1〉 H

H

H

Bf

T

Notice that if the search string is s = (x1, x0), then we will observe the two
bits (x1, x0) in the measurement.

It remains to realize the base change T by a sequence of quantum gates.
Note that

T = (H ⊗H) diag(1,−1,−1,−1)(H ⊗H).

This is easily verified by a direct computation. The diagonal matrix D =
diag(1,−1,−1,−1) can be realized by the circuit

D =
Z

Z

H H

Therefore, we can implement T by

T =
H

H

Z

Z

H H H

H
=

X

ZH H

It is possible to generalize this search problem to n quantum bits. A
quantum algorithm to solve this problem was published by Grover in 1996.
We will discuss his algorithm in detail in one of the following chapters.
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§5 Summary

• Teleportation is a communication protocol that allows to commu-
nicate the state of n quantum bits from Alice to Bob, if they share
n EPR pairs.

• Deutsch’s problem asks to evaluate the parity f(0) ⊕ f(1) of a
boolean black box function f : F2 → F2. A quantum algorithm can
solve this task with a single evaluation of the black box function.

• The hidden subgroup problem asks us to find a generating set
of an unknown subgroup H of a finitely generated group G, given a
black box function f that maps elements of the group G to a finite
set X such that f(x) and f(y) are the same if and only if y−1x ∈ H.

• Let f : F2
2 → F2 be a black box function, which is constant zero

except on one argument. The search algorithm allows us to find
this argument with a single evaluation of f . This algorithm was
suggested by Grover in 1996.


