Challenge Problem 2

CPSC 489/689 Quantum Algorithms
Andreas Klappenecker
The following quantum circuit represents a half-adder; it calculates the sum $a+b \bmod 2$, and the carry $a b$ of the inputs a and b :

The circuit implements a unitary matrix $U_{a d d}$, which is determined by

$$
\begin{aligned}
& U_{\text {add }}|000\rangle=|000\rangle, \quad U_{\text {add }}|100\rangle=|100\rangle, \\
& U_{\text {add }}|001\rangle=|011\rangle, \quad U_{\text {add }}|101\rangle=|111\rangle, \\
& U_{\text {add }}|010\rangle=|010\rangle, \quad U_{\text {add }}|110\rangle=|110\rangle, \\
& U_{\text {add }}|011\rangle=|101\rangle, \quad U_{\text {add }}|111\rangle=|001\rangle .
\end{aligned}
$$

Let $m(U)$ denote the minimal number of controlled-not and single qubit gates, which are needed to realize $U \in \mathcal{U}\left(2^{n}\right)$. The challenge is to determine $m\left(U_{\text {add }}\right)$. In other words, how many controlled-not gates and single qubits gates are needed in an optimal implementation of $U_{\text {add }}$? You need to prove your result.

Remark. Let T denote the unitary matrix corresponding to the Toffoli gate. Notice that $\left|m(T)-m\left(U_{\text {add }}\right)\right| \leq 1$.

I offer a Challenges in Quantum Computing Award, worth US\$ 100, for the first correct solution to this problem.

Andreas Klappenecker

