Challenge Problem 2 CPSC 489/689 Quantum Algorithms Andreas Klappenecker

The following quantum circuit represents a half-adder; it calculates the sum $a + b \mod 2$, and the carry ab of the inputs a and b:

The circuit implements a unitary matrix U_{add} , which is determined by

Let m(U) denote the minimal number of controlled-not and single qubit gates, which are needed to realize $U \in \mathcal{U}(2^n)$. The challenge is to determine $m(U_{add})$. In other words, how many controlled-not gates and single qubits gates are needed in an optimal implementation of U_{add} ? You need to prove your result.

Remark. Let T denote the unitary matrix corresponding to the Toffoli gate. Notice that $|m(T) - m(U_{add})| \leq 1$.

I offer a Challenges in Quantum Computing Award, worth US\$ 100, for the first correct solution to this problem.

Andreas Klappenecker