The Birthday Paradox

Andreas Klappenecker

Suppose that a group of people meet in a room. What is the probability that two of them have the same birthday?

We analyze a more general setting that has wider applicability. Suppose that there are n possible birthdays and k people in a room. We assume that the birthdays are uniformly and independently distributed over $N=\{1, \ldots, n\}$. If person a has its birthday at day b_{a} in N, then the event $\left(b_{1}, \ldots, b_{k}\right)$ has probability $1 / n^{k}$.

We want to calculate the probability p of the event that two people have the same birthday. The complementary event is that all k people have different birthday, and we denote the probability of this event by $q=1-p$.

We calculate the probability q. Suppose that E is the subset of vectors in N^{k} that have pairwise distinct entries. Then

$$
|E|=\prod_{i=0}^{k-1}(n-i)
$$

because we have n possibilities to choose the first entry, $n-1$ for the next entry, and so on. It follows that q is given by

$$
q=\frac{|E|}{n^{k}}=\frac{1}{n^{k}} \prod_{i=0}^{k-1}(n-i)=\prod_{i=1}^{k-1}\left(1-\frac{i}{n}\right)
$$

Recall that $1+x \leq e^{x}$ holds for all real numbers x; hence,

$$
q \leq \prod_{i=1}^{k-1} e^{-i / n}=\exp \left(-\sum_{i=1}^{k-1} \frac{i}{n}\right)=\exp \left(-\frac{k(k-1)}{2 n}\right)
$$

If

$$
k \geq \frac{1}{2}(1+\sqrt{1+8 n \log 2})
$$

then $k(k-1)=\frac{1}{4}(8 n \log 2)=n 2 \log 2$, thus

$$
q \leq \exp (-k(k-1) / 2) \leq 1 / 2
$$

Therefore, the probability $p=1-q$ that two people have the same birthday is at least $1 / 2$ when $k \geq \frac{1}{2}(1+\sqrt{1+8 n \log 2})$.

We followed [J.A. Buchmann, Introduction to Cryptography, Springer, 2001] in this presentation of the birthday paradox. An interesting application is the birthday attack on cryptographic hash functions. Our motivation of Pollard's ρ algorithm was also based on the birthday paradox.

