Homework 1

CPSC 629, Spring 2005
The homework is due on Wednesday, February 2, before class.
Name (print): \qquad UIN \qquad
Problem 1 Calculating the remainder $c=a \bmod b$ by long division has a bit complexity of $O\left(\left(n_{a}-n_{b}\right) n_{b}\right)=O\left(n_{a} n_{b}-n_{b}^{2}\right)=O\left(n_{a} n_{b}-n_{a} n_{c}\right)$ if the integers a, b, and c are respectively represented by n_{a}, n_{b}, and n_{b} bits. Show that if the Euclidean algorithm is implemented with a multiprecision library that represents an integer a with $O\left(n_{a}\right)$ bits, then the Euclidean algorithm takes $O\left(n_{a} n_{b}\right)$ steps to calculate $\operatorname{gcd}(a, b)$. [Hint: Consider the sequence $a_{0}=a$, $\left.a_{1}=b, a_{2}=a_{0} \bmod a_{1}, a_{3}=a_{1} \bmod a_{2}, \ldots\right]$

Problem 2 Suppose that a, b, and c are integers such that $\operatorname{gcd}(a, b)=1$, and that a divides the product $b c$. Prove that a divides c.

Problem 3 Suppose that a_{1}, \ldots, a_{k} are integers and p is a prime that divides the product $a_{1} \cdots a_{k}$. Show that p divides a_{j} for some some j in $1 \leq j \leq k$.

Problem 4 Find an integer x such that

$$
\begin{aligned}
& x \equiv 5 \bmod 31 \\
& x \equiv 7 \bmod 37
\end{aligned}
$$

using the method that we have discussed in class. Show all the steps of the extended GCD calculation.

Problem 5 RSA. Suppose that Alice has the public key (e, n) and evil Eve obtained the secret exponent d. Show that Eve can use a randomized algorithm to factor Alice's modulus n in $O(\operatorname{poly}(\log n))$ time.
[We will give some hints in class]

