
Texas A&M University
College of Engineering

Computer Science Department
CPSC 321:501–506 Computer Architecture

Fall Semester 2004
Lab1

Introduction to SPIM Simulator for the MIPS Assembly Language
on the UNIX and PC Environments

Due Date: One week after your lab session – Complete by yourself.

1 Objective

This laboratory assignment will help you familiarize yourself with the UNIX and PC environments (briefly),
the spim simulator and other utilities, such as, programmers’ editors. You will be using SPIM, the MIPS
simulator by James R. Larus to code and run your first MIPS assembly language program. Bring your [1]
textbook to lab with you, to use the SPIM documentation in Appendix A (A-38). You will also learn how
to interact with UNIX processes running on a UNIX host from a PC console using the X11 windowing
environment.

2 Prelab Requirements

Before entering the lab, make sure that you have your own UNIX and PC accounts and that you can log
into them.

3 Introduction to SPIM

SPIM is a software simulator that loads and executes assembly language programs for the MIPS R2000/R3000
RISC computers. Assembly is a low level language with instructions that correspond very closely to the
machine code a processor executes. SPIM can read and immediately run files containing MIPS assembly
language statements. SPIM is a self-contained system for running these programs and contains a debugger
and interface to the operating system. The installed version of SPIM is 6.5.

SPIM was written by James R. Larus, then at the Computer Sciences Department of University of
Wisconsin, Madison (larus@cs.wisc.edu). SPIM is very portable, which allows students to generate
code for a simple, clean, orthogonal computer. SPIM currently runs on a wide variety of Unix, DOS
and Windows systems. SPIM is copyrighted by James Larus and can be freely used for non-commercial
purposes. You can get source and pre-compiled files from URL:

http://www.cs.wisc.edu/~larus/spim.html

1

Note: It is recommended that you download a version (ver. 6.5) of SPIM for the platform of your choice
and install it on your own machine. The Computer Science Labs maintain versions for both UNIX and
PC platforms.

SPIM implements almost the entire MIPS assembler-extended instruction set for the R2000/R3000
(with the exception of some complex floating point comparison instructions and direct manipulation of the
memory system page tables). The MIPS architecture has evolved considerably since then (in particular the
64 bit extensions), meaning that SPIM will not run programs compiled for recent MIPS or SGI processors.

SPIM implements both a simple, terminal-style (command line) interface and a visual windowing
interface. On Unix, the spim program provides the terminal interface and the xspim program provides the
X11 window interface. On PCs, the spim program provides a DOS (text) interface and PCSpim provides
a Windows interface. [1, Appendix A] (Hennessy & Patterson, Computer Organization and Design: The
Hardware/Software Interface) or [2] are the best introduction to the software.

4 MIPS and Laboratory Assignments

For the first part of the course you will use two programs: SPIM and a decent text editor. We recommend
that you learn to use a real programmer’s text editor. That is, an editor that is designed specifically for
writing computer programs, not just editing arbitrary text such as Pico or Microsoft Notepad. We strongly
recommend to become familiar with any of the EMACS (xemacs, emacs) or VI (vi, vim) families of text
editors. There are versions of both editors on most platforms. The department maintains both EMACS
and VI editors on UNIX and PC workstations.

4.1 PC Environment

4.1.1 Locating Software in Windows-2K/XP

On department PC machines, a good choice is VIM (an implementation of the vi editor, which was developed
by Bill Joy for the Unix operating system), or xemacs/emacs (developed by Richard Stallman, founder of
the GNU project). You are responsible for selecting and learning the editor of your choice.

4.1.2 SPIM on PC

There are two versions of the SPIM for the PC. spim (a command line version) and PCSpim (a graphical
interface one). To launch PCSpim (or vim or Emacs), find the “Programming Tools” menu under the
“Programs” menu, which is on the “Start” button. Use this key sequence (which from now on will be
written as: Start->Programs->Programming Tools) and launch “PCSpim for Windows.”

2

4.2 UNIX Environment

4.2.1 SPIM on UNIX

Under UNIX there are also two versions of SPIM:

• spim, a command line version, that runs in a text window, and

• xspim, one with a graphical interface.

Both spim and xspim readily execute from the shell command line. Make sure that the file called
trap.handler is in the same directory from within which you launch xspim or spim. More documentation
about the SPIM simulator is found in Appendix A of our main textbook by Patterson and Hennessy. You
may develop your MIPS programs on UNIX, but you are not required to. The UNIX environment is more
powerful and flexible in developing code, especially remotely.

4.2.2 Local Copies of SPIM for UNIX

We maintain copies of the SPIM executables for UNIX (xspim, spim) and their source code on the class
web page. Download the executables or the source code from the appropriate link.

4.2.3 Building SPIM on UNIX and UNIX-Like Systems

Login to your CS UNIX account, and create a subdirectory dedicated to cpsc321. Then download SPIM
from URL http://www.cs.wisc.edu/~larus/spim.html and save the file to the above subdirectory. You
need to decompress and “untar” the archive file you downloaded. A quick way is

> gunzip -c spim.tar.gz | tar xvf -
and then build and install SPIM in your account following the instructions in the README file found in this
distribution. You may ask the TA for help with this. Alternatively, download the source code from the
web page of our course, as explained above.

4.2.4 Editing in the UNIX Environment

We recommend that you learn and use xemacs or emacs under UNIX. This is family of editors which is
highly customizable with respect to the type of file that is being edited. Under UNIX, to invoke XEmacs,
simply type xemacs at the shell prompt.

5 A MIPS Assembly Language Program Example

In this class we will be studying the MIPS instruction set and its architecture. An example MIPS assembly
language program is shown below.

3

Your first MIPS assembly program
Notice the stylized format of the code: 3 columns:
(1) Optional labels,
(2) Machine instructions, assembler directives and their operands,
(3) Optional comments: everything to the right of a ’#’ until end of line is
ignored.

.data # "data section" global, static modifiable data

SID: .word 100
spc1: .asciiz " "
nl: .asciiz "\n"
tb: .asciiz "\t"
msg1: .asciiz "Hello, World\n"
msg2: .asciiz "My name is: XXXXXXXXX\n"
msg3: .asciiz "\nMy name is still XXXXXXXXX !\n"

.text # "text section" code and read-only data

.globl main # declare ‘main’ as a global symbol
main: la $a0, msg1

li $v0, 4 # "print string" system call
syscall
la $a0, msg2
li $v0, 4
syscall
lw $a0, SID

la $a1, spc1

Loop: beq $0, $a0, Exit
add $a0, $a0, -1
li $v0, 1 # "print int" system call
syscall
move $t0, $a0
move $a0, $a1
li $v0, 4
syscall
move $a0, $t0
j Loop

Exit: la $a0, msg3
li $v0, 4
syscall

4

Exit from program
li $v0, 10 # "Exit" system call
syscall

6 Requirements for Lab #1

1. Type the MIPS code shown above into a text editor. Replace the XXXXXXXXX by your name and
then save the file under the name Lab1.s. Once you have saved the file, run this MIPS assembly
program using both the PCSpim and xspim simulators. The MIPS assembly code is listed below.
We will explain the meaning of the instructions in class. Load your source file into PCSpim using
File->Open. Then run the program using Simulator->Go. If you typed the sample program in
correctly, the message “... successfully loaded” will appear in the “Messages” window.

Note: the first time you run the program you may get an error message that file “trap.handler was
not found.” From Simulator->Settings, change the path for the trap file from the default setting
to: C:\ProgramFiles\PCSpim\trap.handler and the problem should go away. If your program runs
correctly, a number of messages should appear in the “Console” window.

2. Run Lab1.s under UNIX as well.

3. Write a short paragraph explaining what this program does. You do not have to understand the
assembly details at this point. However, you need to be able to tell what the code does in rough
terms. Save this in a file called “Lab1.rep.” Discuss which environment is better overall for you to
use and for which reasons.

4. Package the two files into one archive file called “Lab1.tar” (or “Lab1.zip”) in the UNIX (PC) en-
vironment. Do not forget to include the student information according to the assignment submission
guidelines shown in the web page of the class.

5. Turnin your work using the turnin UNIX command.

7 Running and Interacting with UNIX from Remote Hosts

This section is optional but provides useful information for interacting with UNIX processes from other
hosts. One very interesting feature of UNIX is the capability to execute and interact seamlessly with
commands at remote UNIX hosts. UNIX uses the X11 windowing server to make remote command
interaction seamless. The basic mode of operation is that a remote UNIX host executes any UNIX command
but the user interacts with it from another UNIX or PC host. This is accomplished by having the host
that a user is using run an X11 server. The remote command can open an X11 (client) window on the

5

host with the X11 server and let the user interact with it directly as if the user was sitting on the host
that executes the command.

7.1 Interacting with UNIX Applications from a PC

To run and UNIX applications from within a PC follow the steps below.

1. Locate and launch the X11 server on the PC (it is called Xwin-32).

2. Use the ssh command from the PC to login to a UNIX host (say to unix.cs.tamu.edu).

3. After log on, type the command who at the shell prompt. You should see a listing of users and
at the far right end you should see the hosts names from which these users have logged on, inside
parentheses. Assume that you are logged from a PC named “myPC”.

4. Then issue the command setenv DISPLAY myPC:0.

5. Run any UNIX command as follows.

• Type xterm to launch an X11 terminal which will be displayed on your PC (myPC). An X11
window will appear on your PC which you may use and type any UNIX command.

• Or, type xspim to launch SPIM on UNIX and interact with it from your PC.

7.2 Interacting with UNIX Applications from other UNIX Hosts

To run and UNIX applications from within another UNIX host follow the steps below.

1. Log on to a UNIX host and launch the X11 server (all SUN Solaris workstations at CS run the CDE
graphical environment).

2. Use the ssh command to login to the remote UNIX host, say unix.cs.tamu.edu.

3. After log on, type the command who at the shell prompt. You should see a listing of users and
at the far right end you should see the hosts names from which these users have logged on, inside
parentheses. Assume that you are logged from a SUN workstation called “interactive”.

4. Issue the command setenv DISPLAY interactive:0.

5. Run any UNIX command as follows.

• Type xterm to launch an X11 terminal which will be displayed on your UNIX host (interactive).
An X11 window will appear on your workstation and the you may type any UNIX command
there.

6

• Type xspim to launch SPIM on the remote UNIX host and interact with it from your local
UNIX host.

1

References

[1] David. A. Patterson and John L. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface, Morgan-Kaufmann Publishers Inc., second edition, 1998, ISBN 1-55860-428-6.
Publisher’s URL: http://www.mkp.com/books catalog/catalog.asp?ISBN=1-55860-428-6.

[2] James R. Larus, “SPIM S20: A MIPS R2000 Simulator,” Unpublished Documen-
tation for SPIM, Computer Sciences Department, University of Wisconsin–Madison, URL:
http://www.cs.wisc.edu/∼larus/spim.html. Latest version is 6.4.

[3] Robert Britton, “MIPS Assembly Language Programming,” Prentice Hall, 2003.

1Copyright c©2001–2003 by Michael E. Thomadakis. This document may be copied and used for non-commercial purposes,
as long as this copyright notice remains on it.

7

