
Computer Architecture
CPSC 321, Fall Semester 2004

Lab Assignment #2
Due: One week after your lab session – complete by yourself.

1 Objective

This laboratory assignment will help you understand loops, procedures, and
the parameter passing conventions of the MIPS assembly language.

2 Assignment

[15 points] For this part of the assignment, you are required to write a MIPS
assembly program to perform character manipulation on a given string in-
put.

The following are the tasks to complete this part:

1. Accept a string input from the console. The input may contain any
ASCII character.

2. You are required to convert all lower case characters into upper case
characters.

3. Display the converted string onto the console.

Example.

Please enter a string: Abc123xY.,;"sdfGH

New string: ABC123XY.,;"SDFGH

[35 points] You are required to use recursion to invert an input sentence,
which will be delimited by the whitespace character.

The following are the tasks to complete this part:

1. Accept a sentence as an input from the console.

1

2. Use recursion to invert the sequence of the words in the sentence. The
only delimiter to be considered is the whitespace character. All other
delimiters should be excluded when splitting the sentence.

3. Display the inverted sentence onto the console.

Example.

Please enter a whitespace delimited sentence: The quick brown
fox jumped over the lazy dog

The inverted sentence is: dog lazy the over jumped fox brown
quick The

3 Documentation on MIPS Assembler and SPIM

This section explains the various directives of the MIPS assembler, as well as,
the “OS-like” services provided by the SPIM simulator to MIPS programs.

3.1 MIPS Assembler Syntax

Comments in assembler files begin with a sharp-sign (#). Everything from
the sharp-sign to the end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, under-bars (),
and dots (.) that do not begin with a number. Opcodes for instructions
are reserved words that are not valid identifiers. Labels are declared by
putting them at the beginning of a line followed by a colon, for example:

.data
item: .word 1

.text

.globl main # main must be global
la $t0, item # load address(item) to register

main: lw $s0, 0($t0) # $t0 == &item;

Strings are enclosed in double-quotes ("). Special characters in strings
follow the C convention:

newline \n
tab \t
quote \"

2

SPIM supports a subset of the assembler directives provided by the ac-
tual MIPS assembler:

.align n
Align the next datum on a 2n byte boundary. For example, .align
2 aligns the next value on a word boundary. .align 0 turns off au-
tomatic alignment of .half, .word, .float, and .double directives
until the next .data or .kdata directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.

.byte b1, ..., bn
Store the n values in successive bytes of memory.

.data <addr>
The following data items should be stored in the data segment. If the
optional argument addr is present, the items are stored beginning at
address addr .

.double d1, ..., dn
Store the n floating point double precision numbers in successive mem-
ory locations.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global
symbol. This directive enables the assembler to store the datum in a
portion of the data segment that is efficiently accessed via register $gp.

.float f1, ..., fn
Store the n floating point single precision numbers in successive mem-
ory locations.

.globl sym
Declare that symbol sym is global and can be referenced from other
files.

.half h1, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

3

.kdata <addr>
The following data items should be stored in the kernel data segment.
If the optional argument addr is present, the items are stored beginning
at address addr .

.ktext <addr>
The next items are put in the kernel text segment. In SPIM, these
items may only be instructions or words (see the .word directive be-
low). If the optional argument addr is present, the items are stored
beginning at address addr .

.space n
Allocate n bytes of space in the current segment (which must be the
data segment in SPIM).

.text <addr>
The next items are put in the user text segment. In SPIM, these items
may only be instructions or words (see the .word directive below). If
the optional argument addr is present, the items are stored beginning
at address addr .

.word w1, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata,
and .sdata).

3.2 System Calls

SPIM provides a small set of operating-system-like services through the
MIPS system call (syscall) instruction. To request a service, a program
loads the system call code (see Table 1) into register $v0 and the arguments
into registers $a0, . . ., $a3 (or $f12 for floating point values). System calls
that return values put their result in register $v0 (or $f0 for floating point
results). For example, to print “the answer = 5”, use the commands:

.data
str: .asciiz "the answer = "

.text
li $v0, 4 # $system call code for print_str
la $a0, str # $address of string to print
syscall # print the string

4

Service System Call Code Arguments Result
print int 1 $a0 = integer
print float 2 $f12 = float
print double 3 $f12 = double
print string 4 $a0 = string
read int 5 integer (in $v0)
read float 6 float (in $f0)
read double 7 double (in $f0)
read string 8 $a0 = buffer, $a1 = length
sbrk 9 $a0 = amount address (in $v0)
exit 10
print character 11 $a0 = integer
read character 12 char (in $v0)

Table 1: System services.

li $v0, 1 # $system call code for print_int
li $a0, 5 # $integer to print
syscall # print it

print int is passed an integer and prints it on the console. print float
prints a single floating point number. print double prints a double preci-
sion number. print string is passed a pointer to a null-terminated string,
which it writes to the console.

read int, read float, and read double read an entire line of input up
to and including the newline. Characters following the number are ignored.
read string has the same semantics as the Unix library routine fgets. It
reads up to n− 1 characters into a buffer and terminates the string with a
null byte. If there are fewer characters on the current line, it reads through
the newline and again null-terminates the string.

sbrk returns a pointer to a block of memory containing n additional
bytes. exit stops a program from running.

4 Dishonesty

Make sure that you complete the assignment by yourself. Do not copy the
code from others, nor provide others with your code. Refrain from copying
and modifying the code from other sources.

5

