
Computer Architecture
CPSC 321, Fall Semester 2004

Lab Assignment # 4
Due: One week after your lab session – complete in a team of up to 2 people

1 Objective

Backtracking is an important algorithmic technique that, basically, explores the solution space by a depth-
first search. Backtracking is most naturally formulated in terms of recursive programs. This assignment
will help you to further develop your MIPS programming skills. You can work in a team, so that you can
gain experience in collaborative software develoment.

2 The n Queens Problem

Suppose that we are given an n × n chessboard, where n is a positive integer. A queen can attack in
horizontal, vertical, and the two diagonal directions. The n-queens problem asks to find a configuration
of n queens on an n× n chessboard such that no two attack one another.

There are no solutions to this problem for n = 2 or 3, but it can be shown that a solution exists for
each n ≥ 4. For instance, the following figure shows a solution for the traditional 8× 8 chessboard.

0Z0Z0l0Z
Z0ZqZ0Z0
0Z0Z0ZqZ
l0Z0Z0Z0
0Z0Z0Z0l
ZqZ0Z0Z0
0Z0ZqZ0Z
Z0l0Z0Z0

Your task is to program a MIPS assembly language program that solves the n-queens problem with
backtracking. We have included a solution in a high-level language that can serve as a guide.

1

3 Prolegomena

Apparently, any solution to the n-queens problem has exactly one queen in each row. We can use an array
row to store in row[i] the position of the queen in the ith row. Since the queens have to be in different
columns, it follows that a solution has to satisfy row[i]6=row[j] for all distinct i and j.

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0l0
0l0Z0Z0Z
Z0Z0Z0Z0
0Z0l0Z0Z
Z0Z0Z0Z0

The two queens in the ith and jth row are on the same diagonal if and only if |i− j|=|row[i]− row[j]|,
as the above example illustrates.

The main idea is to proceed row by row. Suppose that we have already selected the values of row[k]
for all 0 ≤ k < i. We try to select a value for row[i] that is consistent with the requirements that we have
outlined above. If that is not possible, then we backtrack and choose a different value for row[i-1].

One possible solution is outlined in the following pseudocode fragment:

bool is_admissible(int i) {

for(int k=0; k<i ; k++) {
if(row[i] == row[k] or abs(row[i]-row[k]) == i-k)

return false;
}
return true;

}

2

void queens(int i) {

if(is_admissible(i))
if (i==n-1) {

print_board();
exit; // finding one configuration is enough.

}
else

for(int j=0; j<n; j++) {
row[i+1] = j;
queens(i+1);

}
}

The call queens(-1) determines a valid assignment values to row[j], 0 ≤ j < n, such that the queens at
positions (j, row[j]) do not threaten each other (if such a configuration exists).

4 The Task

Write a MIPS assembly language equivalent of the above code fragment. If your program is executed for
instance on the SPIM simulator, then the user should be prompted to provide a size n. If the user enters
for instance 6, then your programs should output a valid configuration of 6 queens on the chess board,
such as

Please provide the size n = 6
-*----
---*--
-----*
*-----
--*---
----*-

[25 points] Write a procedure print_board to print the configuration that is stored in the array row.
A queen should be represented by a star ‘*’ and an empty field by a dash ‘-’. The value of row[i] ranges
between 0 and n− 1 and represents the position of the column that contains the queen of the ith row; the
rows range from 0 ≤ i < n.

[20 points] Write an procedure is_admissible that takes an argument $a0=i and checks whether the
value in row[i] is consistent with the values contained in rows row[k] with 0 ≤ k < i. The procedure can

3

assume that the values row[k], with 0 ≤ k < i, represent a valid configuration, meaning that the queens
are in distinct columns and no two are on the same diagonal.

[35 points] Write a recursive procedure queens that calculates a valid configuration of n queens. Write
a main program that prompts the user to input n, calculates and prints a solution, and repeats this cycle.

[20 points] It is important that you plan your task and take advantage of the fact that you work in
a team. Please keep a design notebook that documents your design process and all the steps in the
program development; it should document the progress that you made while writing your software (keep
track of date and time). Write the design notebook while you are developing the software, do not write it
after the fact.

Your notebook should keep a log of all the errors that you make; it should be handwritten with a pen
that is not erasable; printouts documenting your progress should be glued in. The grading of your design
notebook will take into account the clarity, regularity, legibility and organization of your annotations.

4

