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Chapter 1

Assembly Language

The purpose of this chapter is to give an introduction to the basics of the MIPS
assembly language. If you want to get fluent in a programming language,
then the best approach is always learning by doing. You should have the
SPIM simulator ready so that you can immediately check the behavior of the
programs, and—more importantly—create and implement some variations.
Read the simulator manuals and solve all the exercises.

This chapter supplements Chapter 3 and Appendix A in Patterson and
Hennessy, Computer Organization and Design, Morgan Kaufmann Publishers,
1997.

§1 Getting Started

The MIPS architecture is an example of a Reduced Instruction Set Computer
architecture, which is characterized by a relatively small set of instructions
and a comparatively large number of registers. It is a so-called load-store
architecture, which means that the main memory is accessed only through load
and store operations; all other instructions are between registers. Among other
advantages, this helps to simplify the design of pipelining mechanisms. In case
you are curious, MIPS is an acronym for Microprocessor without Interlocked
Pipeline Stages.

The MIPS architecture and its variations was used in SGI workstations,
CISCO routers, Nintendo 64 video games, early Linux PDAs, and many em-
bedded systems. We will run our programs on the SPIM simulator of the
MIPS architecture.

Let us write our first assembler program. We want to add two integers a
and b and store the result in a different memory location c. In a high level
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2 CHAPTER 1. ASSEMBLY LANGUAGE

language, you could formulate this by the statement c = a + b.
If a, b, and c denote registers $t1, $t2, $t3, then the MIPS assembler

statement add $t3, $t1, $t2 solves the problem just as easily.
If a, b, and c are integers stored in the main memory, then we need to load

a and b into registers $t1 and $t2, perform the addition as before, and then
store the result of register $t3 into c. The MIPS assembler has the command
lw to load a word into a register, and the command sw to store a word that
is contained in a register into the memory. The four commands to load, add,
and store the results are show in the following MIPS assembler program:

# Addition of two values, c=a+b
.text # code section
.globl main

main:
lw $t1, a_addr # load a into $t1
lw $t2, b_addr # load b into $t2
add $t3, $t1, $t2 # add $t1 and $t2 and store in $t3
sw $t3, c_addr # store $t3 into c

.data # data section
a_addr: .word 10 # value a=10
b_addr: .word 20 # value b=20
c_addr: .word 0 # intialize c arbitrarily

In general, a MIPS assembler program has a code section and a data section.
The assembler directive .text tells the assembler that assembler instructions
follow. Similarly, the assembler directive .data has the effect that the fol-
lowing data items are stored in the data segment. A label can have local file
scope, or might be globally visible. For instance, the label main is declared to
be globally visible by the directive .globl.

In the data section of the above program, the variables a and b are initial-
ized to 10 and 20, respectively. The local labels a_addr and b_addr allow the
assembler to determine the address of these memory locations. The assembler
directive .word means that the following data is interpreted as a 32 bit word.

Exercise 1.1 Use the MIPS simulator spim (which might be called xspim
or pcspim on your system) to trace step by step through the above program.
Make yourself familiar with the functionality of this simulator.

Exercise 1.2 Write a MIPS assembler program to calculate d = (a− b) + c.
Consult Appendix A in [2] to learn about assembler instructions (for instance,
to perform a subtraction).

Exercise 1.3 In Chapter 3, the textbook repeatedly uses the sequence
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add $t0, $t0, $t0
add $t0, $t0, $t0

to multiply the register $t0 by four. Find a single MIPS assembler command
that has the same effect but is not a multiplication.

§2 Hello World!

The spim simulator offers a minimal set of system calls. The available proce-
dures allow reading and writing integers, floating point numbers, and strings.
We illustrate a system call with the notorious Hello World! program.

A system call is performed as follows: Load the system call code into
register $v0, and the arguments into the registers $a0, . . . , $a3. Execute the
system call by syscall. If the system call returns a value, then it can be
found in register $v0.

Printing a string is easy. The code of the print string routine is 4. The
load immediate pseudoinstruction li $v0, 4 prepares the MIPS CPU for
the execution of the print string routine. The address of the string must be
contained in the argument register $a0. The load address instruction la $a0,
str calculates the address of the label str and stores the result in $a0. The
complete MIPS assembler program to print Hello World! is given below.

# Hello world program
.text # code section
.globl main

main:
li $v0, 4 # system call for print_str
la $a0, str # address of string to print
syscall # print the string

li $v0, 10 # system call for exit
syscall # exit

.data # data section
str: .asciiz "Hello world!\n" # NUL terminated string

The assembler directive .asciiz means that the following data is a string
terminated by \0. The second system call is simply to exit the program.

Exercise 1.4 Write a MIPS assembler program that prompts the user to
enter two integers, calculates the sum of these integers, and prints the result.
[Hints: The system call code of the read integer routine is 5, and the result
of this routine is contained in register $v0. The system call code to write an
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integer is 1; the argument should be contained in register $a0. The content
of register a can be assigned to register b by move b, a.]

§3 Branching

The control flow of a MIPS assembler program can be influenced by branch
instructions. For instance, the branch on equal instruction beq a, b, label
compares the registers a and b, and jumps to the label label if the register
contents are equal. Similarly, ble a, b, label jumps to label if register
a is less than or equal to register b; this instruction corresponds to the high
level command if a<=b then goto label.

The instructions beq and ble are examples of conditional branches. An un-
conditional branch or jump is given by j label, which jumps to label. These
conditional branch and unconditional jump instructions are useful to imple-
ment if-then-else constructs. Suppose that you want to express the statement
if a==b then /* blockA */ else /* blockB */ fi. We assume that reg-
ister $t0 represent the variable a, and register $t1 the variable b. A direct
translation of this statement can be accomplished by the following assembly
language template:

beq $t0, $t1, blockA # if $t0 = $t1 goto blockA
j blockB # goto blockB

blockA: ... # omitted stmts of blockA (then part)
j endif # goto endif

blockB: ... # omitted stmts of blockB (else part)
endif: ... # subsequent statements

The resulting sequence of statements, however, is not optimal. The following
two exercises show how to improve upon this code:

Exercise 1.5 Read and memorize all branch and jump commands given in
Appendix A of [2].

Exercise 1.6 Find a MIPS assembler template for

if a==b then /* blockA */ else /* blockB */ fi

that uses just one jump instruction j instead of two.

§4 Loops

The branch instructions can be used to form loops. We illustrate this with a
little assembler program that prints the integers from 1 to 10. The registers
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$s0 and $s1 contain the lower and the upper loop bounds. The program
increases the register $s0 by one in each iteration of the loop.

# Loop printing the integers from 1 to 10
.text
.globl main

main:
li $s0, 1 # $s0 = loop counter = lower bound
li $s1, 10 # $s1 = upper bound of loop

loop: move $a0, $s0 # print loop counter
li $v0, 1 # "
syscall # "

li $v0, 4 # print a linebreak
la $a0, linebrk # "
syscall # "

addi $s0, $s0, 1 # increase loop counter by 1
ble $s0, $s1, loop # if $s0 <= $s1 goto loop

li $v0, 10 # system call for exit
syscall # exit

.data
linebrk: .asciiz "\n"

The two system calls print the counter $s0 and a newline, respectively.
The instruction addi a, b, const adds the constant const to the content
of register b and stores the result in register a. This instruction is used
to increase the counter by one in each iteration. The branching instruction
ble $s0, $s1, loop jumps back to loop unless $s0 exceeds 10.

You might have recognized that this implementation resembles a repeat-
until loop of high-level programming languages. It is possible to find imple-
mentations for while loops and for loops as well.

§5 Addressing

The memory operations can only store or load data from addresses aligned
to suit the data type. This means that a word (which is four bytes long)
can be loaded only from addresses that are divisible by four. Load and store
operations are available for bytes, halfwords, words, and double words.

So far, we have accessed memory locations by explicitly referencing a label.
Essentially, the assembler calculated the address, a convenient but inflexible
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solution. Alternately, the load and store operations can select a memory
location by the value of a register to which a 16-bit signed offset is added.
For instance, the instruction lw $t0, 16($t1) loads the register $t0 with
the content of the memory at address (value of $t1)+16.

We illustrate this addressing mode by a program that adds the constant 5
to each element of an “array” represented by a sequence of memory cells. We
initialize this sequence by the directive .word 0,2,1,4,5 in the data section.
The first element is accessible via the label Aaddr; this address is loaded into
register $t0. We have a loop that steps through each of the array elements by
increasing the address by four bytes in each iteration. Readers familiar with
C or C++ can easily formulate an equivalent high-level program using pointer
arithmetic.

# Increases all elements of array by 5
.text
.globl main

main:
la $t0, Aaddr # $t0 = pointer to array A
lw $t1, len # $t1 = length (of array A)
sll $t1, $t1, 2 # $t1 = 4*length
add $t1, $t1, $t0 # $t1 = address(A)+4*length

# = just beyond the last element of A

loop: lw $t2, 0($t0) # $t2 = A[i]
add $t2, $t2, 5 # $t2 = $t2 + 5
sw $t2, 0($t0) # A[i] = $t2
add $t0, $t0, 4 # i = i+1
bne $t0, $t1, loop # if $t0<$t1 goto loop

li $v0, 10 # exit
syscall #

.data
Aaddr: .word 0,2,1,4,5 # array with 5 elements
len: .word 5

Exercise 1.7 The above program assumes that the “array” contains at least
one element. Modify the program such that empty “arrays” of length zero are
correctly treated.
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§6 Procedure Calls

An assembler program can be structured into subroutines or functions, similar
to high-level languages. For longer assembler programs, the design will usually
consist of smaller subroutines that are easier to test.

In a high-level language, calling a subroutine usually means remembering
the place from which the call originated, and saving all variables that will
be overshadowed by local variables of the called procedure. At the end of
the procedure, the execution will continue with the next command after the
subroutine call, after restoring the saved variables.

In assembly language, the subroutine call behaves similarly, but only by
convention rather than by rules enforced and checked by the assembler. This
means that you need to be extra careful when coding procedures, so that
nobody using your routines—including yourself—will be annoyed.

Register Conventions. The use of the 32 registers in the MIPS architec-
ture is governed by conventions. The registers $t0–$t9 are temporary and
can be used by the called subroutine without saving. This means that the
value of these registers is possibly modified after a call to a subroutine, so the
calling procedure might have to save and restore them, if that is necessary.

A subroutine using any of the registers $s0–$s7 has to save the value of
the register before modifying it, and has to restore its value before it exits. It
is instrumental that you follow this rule because everybody will rely on this
behavior. The register $sp contains the stack pointer, and the stack is used,
for instance, to store and retrieve register values.

The arguments for the subroutine are stored in the registers $a0–$a3. The
return values are stored in register $v0 and, possibly, $v1.

Simple Procedures. We will ignore for the moment that variables might
have to be stored and restored, and focus on the procedure call itself.

A procedure call is initiated by executing the command jal procname,
where procname is a label denoting the first address of the procedure. This
instruction jumps to the address procname and it stores the return address,
that is, the address of the following instruction, in the return address register
$ra. Thus, at the end of the procedure, the instruction jr $ra returns the
control to the instruction just behind the procedure call.

Let us have a look at a simple example. We rewrite our program to print
integers from 1 to 10, with a line break after each integer. This time, we use
a procedure print_int to print an integer, and print_eol to print the line
break. The structure of the loop remains the same, but the purpose of the
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system calls is more transparent by packaging them into procedures with more
meaningful names. A minor disadvantage is that we get some small overhead
through the procedure calls.

# Loop printing the integers from 1 to 10
.text # code section
.globl main

print_int: # prints the integer contained in $a0
li $v0, 1 #
syscall #
jr $ra # return();

print_eol: # prints "\n"
li $v0, 4 #
la $a0, linebrk #
syscall #
jr $ra # return();

main:
li $s0, 1 # $s0 = loop counter = lower loop bound
li $s1, 10 # $s1 = upper bound of loop

loop: move $a0, $s0 # print loop counter
jal print_int # store return address and jump to print_int
jal print_eol # print "\n"
addi $s0, $s0, 1 # increase loop counter by 1
ble $s0, $s1, loop # if $s0 <= $s1 goto loop

li $v0, 10 # exit program
syscall #

.data
linebrk: .asciiz "\n"

It was not necessary to save any registers in the above example. We explain
the basic principles of such housekeeping principles in the next paragraph.

The Stack. It is convenient to store and retrieve register values from the
stack during procedure calls, particularly when the procedure is recursive.
Usually, an abstract stack is equipped with functions push and pop. In the
MIPS architecture, the treatment is a little bit more spartanic.

The register $sp holds the address of the top element of the stack. By
convention, the stack grows from higher addresses to lower addresses. We can
push the content of a register, say $s0, onto the stack by
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sub $sp, $sp, 4
sw $s0, 0($sp)

Similarly, we can pop the value by

lw $s0, 0($sp)
add $sp, $sp, 4

The only thing to keep in mind is that a sequence of pushes must be undone by
the corresponding sequence of pops in reverse order, when saving and restoring
register variables.

A subtle point occurs when a procedure procA calls another procedure
procB. In this case, the second call jal procB overwrites the return address
of procedure A. This means that we need to store the return address register
$ra before calling procB and restore the value of $ra afterwards.

An Example. The basic principles of procedure calls are best illustrated
with the help of a simple example. We implement a recursive procedure that
calculates the nth Fibonacci number fib(n). Recall that

fib(0) = 0, fib(1) = 1, fib(2) = 1, fib(3) = 2, fib(4) = 3, fib(5) = 5, . . .

Further elements of this sequence can be calculated by fib(n) = fib(n − 1) +
fib(n− 2).

The main procedure prompts the user to input n. It calls the recursive
procedure fib(n). As a recursive procedure, fib has to store the return address
on the stack. It also stores the registers $s0 and $a0. The purpose of these
registers is to store intermediate results; $s0 will contain fib(n− 1), and $a0
keeps track of the arguments. The program is adapted from Waldron [3], after
a few modifications.

# Calculating Fibonacci numbers
# fib(0) = 0
# fib(1) = 1
# fib(n) = fib(n-1)+fib(n-2)

.text

.globl main
print_str:

li $v0, 4 # print string at ($a0)
syscall #
jr $ra # return;

print_eol:
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la $a0, eol # print "\n"
li $v0, 4 #
syscall #
jr $ra # return;

print_int:
li $v0, 1 # print integer ($a0)
syscall #
jr $ra # return;

# fib(n) - recursive function to compute nth Fibonacci number
#
fib: sub $sp,$sp,12 # save registers on stack

sw $a0, 0($sp) # save $a0 = n
sw $s0, 4($sp) # save $s0
sw $ra, 8($sp) # save $ra to allow recursive calls

bgt $a0,1, gen # if n>1 then goto generic case
move $v0,$a0 # output = input if n=0 or n=1
j rreg # goto restore registers

gen: sub $a0,$a0,1 # param = n-1
jal fib # compute fib(n-1)
move $s0,$v0 # save fib(n-1)

sub $a0,$a0,1 # set param to n-2
jal fib # and make recursive call
add $v0, $v0, $s0 # $v0 = fib(n-2)+fib(n-1)

rreg: lw $a0, 0($sp) # restore registers from stack
lw $s0, 4($sp) #
lw $ra, 8($sp) #
add $sp, $sp, 12 # decrease the stack size
jr $ra

main:
la $a0, en # print "n = "
jal print_str

li $v0, 5 # read integer
syscall #

move $a0, $v0 # $a0 := $v0
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jal fib # call fib(n)
move $s0, $v0 # store result in $s0

la $a0, fibstr # print "fib(n) = "
jal print_str #

move $a0,$s0 # print fib(n)
jal print_int #
jal print_eol # print "\n"
li $v0,10 # exit
syscall #

.data
eol: .asciiz "\n"
en: .asciiz "n = "
fibstr: .asciiz "fib(n) = "

The overall structure is simple, except that at the beginning of the proce-
dure fib, some registers are saved that are restored at the end of the procedure.

Exercise 1.8 Why is it necessary to save and restore register $a0?

Exercise 1.9 Write a recursive procedure that calculates n! = n(n− 1) · · · 1.

§7 Elements of Style

An assembler program is much harder to read than a high-level language
program. The changing roles of register contents can be confusing, and the
large amount of detail makes it hard to interpret a program. A proper style
of commenting your program is absolutely essential. If I would not have
included any comments in the previous examples, they would be much harder
to understand, even tough they are tiny.

As a rule of thumb, you should comment nearly every line of your program.
An exception are system calls, where the purpose—such as print “abc”—can
be clarified by a single line of comment. In this case, a comment that syscall
is a system call is hardly illuminating.

Try to stick to similar indentations for the label, instruction, and comment
columns of your program. In general, you should try to make the presentation
appealing. Nobody wants to read some messy code, particularly assembly
code.

You can help the reader to better understand a procedure by explaining
the purpose of the registers. Especially, it is good practice to indicate which
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variables are used. Especially, if your subroutine is affecting the content of
registers, such as $t0, then you should mention that.

If your program is long, then it is helpful indicate the purpose of some
assembly code by stating equivalent high-level code in comments. This allows
a reader to navigate more quickly through a large assembly language program.

§8 Further Reading

Appendix A by James Larus in [2] is essential reading material. This appendix
contains all the instructions and pseudo-instructions that you will need for
your programming assignments. There are some helpful links on the class
homepage that contain numerous examples and good explanations.

If you are really curious, then you can read the books by Britton [1] or
Waldron [3] on MIPS assembly language programming.
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