
Fibonacci Numbers
An Exercise in Assembly Language Programming

Andreas Klappenecker

September 7, 2004

1 Introduction

Leonardo Pisano (1170–1250) was a scholar born in Pisa in Italy, who is prob-
ably better known by his nickname Fibonacci. During the first 30 years of his
live, he traveled extensively through North Africa, where he learned numerous
mathematical skills of Arab origin. In 1202, Fibonacci returned to Pisa and
wrote his famous book on arithmetic and algebra, the Liber abaci. The book
was very influential on the further mathematical development of Europe, despite
the fact that it had to be copied by hand (the printing press was not introduced
until the 15th century).

Among many other things, the book contained the following famous problem:

A man puts a pair of rabbits in a place surrounded on all sides by
a wall. How many pairs of rabbits can be produced from that pair
in a year, assuming that every month each pair begets a new pair
which from the second month on becomes productive?

The problem gave rise to the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .)
in which each term is the sum of the previous two, so it is determined by the
recurrence f(n) = f(n − 1) + f(n − 2) with f(0) = 0 and f(1) = 1. Fibonacci
could not possibly foresee the tremendous impact of his little rabbit sequence.
Numerous curious applications are listed in the Neil Sloane’s encyclopedia of
integer sequences,

http://www.research.att.com/∼njas/sequences/index.html,

and countless papers about this sequence have been published in The Fibonacci
Quarterly.

We derive an assembly language program that calculates the Fibonacci num-
bers. The program is specified in Don Knuth’s Literate Programming style that
makes a program more readable for humans. Literate programming can be
applied for any programming language, but it is especially nice for assembly
language programs that are hard to understand without comments.

The basic philosophy of literate programming is that a file contains the
documentation and the program code. The documentation produces a LATEX or
plain TEX document, and this note is an example.

1

http://www.research.att.com/~njas/sequences/index.html

September 7, 2004 fibonacci.nw 2

In literate programming, we use a simple macro mechanism that refers to a
chunk of code in the form 〈chunk 〉. The particular meaning of 〈chunk 〉 is spec-
ified in some other part of this document, following the statement 〈chunk 〉 ≡.
If a text is very long, then the chunk can be defined is smaller parts, where
〈chunk 〉+ ≡ represents some code that is appended to a previous part of 〈chunk 〉.

In this example, I have used Norman Ramsey’s noweb tools to extract the
documentation and assembly code from the file fibonacci.nw. I have selected
this examples so that you can compare this style of documentation with the
one presented in the lecture notes or with the original version by John Waldron
from which this source is derived.

A short program cannot fully illustrate the strengths of this method, but for
long programs there is little doubt that a structured programming approach in
the literate programming style yields excellent results. An impressive example
is the documentation of Don Knuth’s plain TEX that comprises a whole book.
Knuth is quite confident that literate programming produces solid code, and
offers $327.68 for each bug in TEX! Some well-known software companies could
immediately declare bankruptcy if they would offer similar rewards.

2 The Fibonacci Program

The overall structure of our program is pretty simple, and you will figure out the
details of literate programming by skimming through the remaining paragraphs.
We have a single file fib.asm that contains all parts of the MIPS assembly
language program.

An assembly language program starts with a .text directive which indicates
that the subsequent text is some assembly code, and a declaration of a global
label main so that the SPIM simulator finds the entry point of your program.
The file fib.asm is structured as follows:

2a 〈fib.asm 2a〉≡
.text
.globl main

〈output routines 3a〉
〈Fibonacci procedure 3d〉
〈main procedure 5〉

.data
〈string definitions 2b〉

http://www.eecs.harvard.edu/~nr/noweb/
http://www.cs.tcd.ie/John.Waldron/itral/source/fib.a

September 7, 2004 fibonacci.nw 3

The program consists of a couple of output routines, a recursive procedure to
calculate the Fibonacci numbers, and a main procedure that prompts the user
to input an argument n, calculates f(n) and then prints the result.

Data Segment. Recall that .data is the assembly language directive which
indicates that the subsequent text will be put into the data segment. We simply
define here the strings

2b 〈string definitions 2b〉≡ (2a)

eol: .asciiz "\n"
en: .asciiz "n = "
fibn: .asciiz "fib(n) = "

The strings are used for user interaction. The remaining three chunks of code are
explained in detail in the subsequent paragraphs. You might have notice that
we explained the strings first, although they are the last part of the program.
You do not need to worry about the particular order, since the code extraction
program notangle just needs to known what the code chunks mean; it will get
the order right. In the extracted assembly code, the three strings will directly
follow the .data directive, as intended.

Output routines. Let us start with some simple routines for user interaction.
The first procedure prints the NUL terminated string that starts at the address
contained in the register $a0. You might recall that the system call number 4
provided by the SPIM environment solves this task. The advantage is that jal
print str is more memorable than some nameless system call.

3a 〈output routines 3a〉≡ (2a) 3b .

print_str:
li $v0, 4 # print string at ($a0)
syscall #
jr $ra # return;

Recall that the string "\n" can be found at address eol. The next procedure
allows you to print a line break.

3b 〈output routines 3a〉+≡ (2a) / 3a 3c .

print_eol:
la $a0, eol # print "\n"
jal print_str #
jr $ra # return;

The print int procedure prints the integer that is contained in register $a0.
3c 〈output routines 3a〉+≡ (2a) / 3b

print_int:
li $v0, 1 # print integer ($a0)
syscall #
jr $ra # return;

September 7, 2004 fibonacci.nw 4

Fibonacci procedure. The calculation of the Fibonacci number f(n) is done
by calling the procedure fib with the argument n stored in the register $a0.
Our implementation is a recursive procedure that consists of three parts:

3d 〈Fibonacci procedure 3d〉≡ (2a)

fib:
〈save registers 4a〉
〈calculation 4b〉
〈restore registers 4c〉

We save the registers on the stack, calculate f(n) by adding f(n−1) and f(n−2)
in the generic case, restore the registers and return the result.

The main calculation uses the registers $s0 and $a0; these registers and $ra,
the register containing the return address, need to be saved on the stack before
we can proceed further.

4a 〈save registers 4a〉≡ (3d)

sub $sp,$sp,12 # save registers on stack
sw $a0, 0($sp) # save $a0 = n
sw $s0, 4($sp) # save $s0
sw $ra, 8($sp) # save $ra to allow rec. calls

Recall that the stack grows from large addresses to smaller addresses. By sub-
tracting 12 from the stack pointer we make room to save the three registers onto
the stack. After the calculation, we will pop the stored values of $a0, $s0, and
$ra from the stack and restore their values.

The argument is contained in the register $a0. If this register contains 0
or 1, then we can return this value, since f(0) = 0 and f(1) = 1. If $a0 contains
a value n > 1, then we calculate f(n− 1) store the value in $s0, then calculate
f(n− 2), add the two values and return the result.

4b 〈calculation 4b〉≡ (3d)

bgt $a0,1, gen # if n>1 then goto generic case
move $v0,$a0 # output = input if n=0 or n=1
j rreg # goto restore registers

gen: sub $a0,$a0,1 # param = n-1
jal fib # compute fib(n-1)
move $s0,$v0 # save fib(n-1)

sub $a0,$a0,1 # set param to n-2
jal fib # and make recursive call
add $v0, $v0, $s0 # $v0 = fib(n-2)+fib(n-1)

September 7, 2004 fibonacci.nw 5

It remains to restore the values of the registers that we have changed. For
example, we have reduced the value of $a0 twice during the calculation, so we
need to restore it now. Similarly, we have modified $s0; by convention, we need
to restore it to its original value.

4c 〈restore registers 4c〉≡ (3d)

rreg: lw $a0, 0($sp) # restore registers from stack
lw $s0, 4($sp) #
lw $ra, 8($sp) #
add $sp, $sp, 12 # decrease the stack size
jr $ra

Main procedure. The main procedure is fairly straightforward. We prompt
the user to input the argument n, call the Fibonacci procedure fib with this
argument, and print the result.

5 〈main procedure 5〉≡ (2a)

main:
la $a0, en # print "n = "
jal print_str

li $v0, 5 # read integer
syscall #

move $a0, $v0 # $a0 := $v0
jal fib # call fib(n)
move $s0, $v0 # store result in $s0

la $a0, fibn
jal print_str

move $a0,$s0 # print result
jal print_int #
jal print_eol #

li $v0,10 # exit
syscall #

The system call 10 is the proper way to exit from SPIM.

Final Remark. Many people tend to get religious about how one should de-
velop and document software. I do not try to convince you that this is “the” way
to do it. Personally, I enjoy reading literate programs and find the typesetting
of LATEX more pleasant than other alternatives. In my experience, the documen-
tation and code needs to be in the same file, otherwise the two documents then

September 7, 2004 fibonacci.nw 6

the get out of sync. You should try the literate programming style yourself.
The site www.literateprogramming.com contains numerous examples, tools,
and manuals.

www.literateprogramming.com

	Introduction
	The Fibonacci Program

