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Let (A,¹) be a partially ordered set. The relation a ¹ b can be read as “a
precedes b”. For elements a and b in A, we write a ≺ b if and only if a ¹ b and
a 6= b holds. For notational convenience, we also write a º b if and only if a ¹ b
holds, and a Â b if and only if a ≺ b holds.

We call (A,¹) a well-founded set if and only if every non-empty subset
M of A contains at least one minimal element m with respect to the order
relation ¹. Put differently, any non-empty subset M of a well-founded set A
contains an element m such that there does not exist an element m′ in M
satisfying m′ ≺ m.

An infinite descending chain S in a partially ordered set (A,¹) is an
totally ordered subset of A without minimal element. In other words, S contains
elements a1, a2, . . . such that a1 Â a2 Â a3 Â · · · .

Proposition 1. Let (A,¹) be a partially ordered set. Then the following two
statements are equivalent:

(i) (A,¹) is a well-founded set.
(ii) There does not exist any infinite descending chain in A.

Proof. (i) ⇒ (ii). Seeking a contradiction, we assume that (i) holds but that
there exists an infinite descending chain S in A. However, S is a non-empty
subset of A without minimal element, contradicting the fact that A is a well-
founded set.

(ii) ⇒ (i). Seeking a contradiction, we assume that (ii) holds, but that
A is not a well-founded set. Therefore, there exists a non-empty subset C of
A that does not contain a minimal element. However, a non-empty set that
does not contain a minimal element must contain an infinite descending chain,
contradicting our assumption (ii).

Theorem 1 (The Principle of Noetherian Induction). Let (A,¹) be a well-
founded set. To prove that a property P (x) is true for all elements x in A it is
sufficient to prove the following two properties:
(a) Induction basis: P (x) is true for all minimal elements of A.
(b) Induction step: For each non-minimal x in A, if P (y) is true for all

y ≺ x, then P (x) is true.

Remark. Instead of checking the two conditions (a) and (b) of the previous
theorem, it suffices to prove a single condition:
(a&b) For all x in A, if P (y) is true for all y ≺ x, then P (x) holds.
If x is minimal in A, then there are no elements y preceding x, so condition
(a&b) requires us to prove that P (x) is true. Thus, (a&b) is simply a slick way
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to write (a) and (b) in a concise form, but the proof requires the same amout
of work.

Proof. Seeking a contradiction, we assume that the set of counter examples

C = {x ∈ A |P (x) is false}
is not empty. Since A is a well-founded set, there must exist a minimal element
m of C. By construction, all elements a in A such that a ≺ m satisfy P (a)
is true, hence P (m) must be true, contradicting our assumption that C is not
empty.

Examples of Well-Founded Sets

Let us take a look at a few examples of well-founded sets.

Example 2. Let N = {1, 2, . . . } denote the set of natural numbers. Then
(N,≤) with the familiar “less than or equal to” relation ≤ is a well-founded set,
since there obviously cannot exist an infinite decreasing chain in N.

Example 3. Let L be an integer. The set {x ∈ Z |x ≥ L} with the “less than
or equal to” relation ≤ is a well-founded set.

Counterexample 4. The set of integers Z with the “less than or equal to”
relation ≤ is a totally ordered set, but is not a well-founded set.

Example 5. Let A = {S ∈ P (N) | |S| < ∞} be the set consisting of the finite
subsets of the set of natural numbers. Then (A,⊆) with the usual set inclusion
is a partially ordered set. Since any set S in A of cardinality n can have at most
n predecessors, there cannot exist an infinite descending chain in A. Therefore,
(A,⊆) is a well-founded set.

Let (A,¹) be a partially ordered set. The lexicographic ordering v on
A×A is given by

(a, b) v (a′, b′) if and only if

{
a ≺ a′,
a = a′ and b ¹ b′,

for all a, b, a′, b′ in A.

Proposition 6. Let (A,¹) be a partially ordered set. If (A,¹) is a well-founded
set, then the lexicographically ordered set (A×A,v) is a well-founded set as well.

Proof. Seeking a contradiction, we assume that there exists an infinite decreas-
ing chain S = {(ak, bk) | k ∈ I} in (A × A,v). If the set F = {ak | (ak, bk) ∈
S, k ∈ I} of the first components of S is an infinite set, then F is an infinite
decreasing chain in A, contradicting the fact that A is a well-founded set. There-
fore, the set F must be finite. Since S is an infinite set, there must exist an a in
F such that L = {bk | (a, bk) ∈ S, k ∈ I} is an infinite set. Since S is an infinite
decreasing chain, it follows that L must be an infinite decreasing chain in A,
contradicting the fact that A is a well-founded set. Therefore, there does not
exist any infinite decreasing chain S in (A×A,v), which proves our claim.
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Existence of Factorizations into Primes

The set N2 = {2, 3, . . . } of integers greater than 1 is a well-founded set with
respect to the usual “less than or equal” ordering relation ≤. Evidently, the
number 2 is the only minimal element of (N2,≤). Furthermore, N2 is totally
ordered with respect to ≤. It is not hard to see that (N2,≤) is a well-founded
set. We can easily prove the existence of a factorization into primes using
Noetherian induction.

Proposition 7. Every integer n ≥ 2 is a product of prime numbers.

Proof. For n ≥ 2, we let P (n) denote the statement “n is a prime or a product
of prime numbers”. We need to show that P (n) is true for all n ≥ 2.
Induction basis: Since 2 is a prime, it follows that P (2) is true.
Induction step: We assume that n > 2 and P (n) is true for 2 ≤ k < n. If n is
prime, the P (n) is true. So assume that n is not prime, then n = xy for some
integers x and y in the range 2 ≤ x < n and 2 ≤ y < n. By assumption P (x)
and P (y) is true, so n is a product of primes, hence P (n) is true.
It follows by induction that P (n) is true for all n ≥ 2.

Ackermann’s Function

Let N0 = {0, 1, 2, . . . } denote the set of non-negative integers. Consider the
following recursively defined function

A(x,y) =
if (x==0) then return y+1;
else if (y==0) then return A(x-1,1);

else return A(x-1,A(x,y-1));

This function is known as Ackermann’s function. It is notorious for its extraor-
dinary growth.

The function A(x,y) is defined for all inputs from N0 ×N0. One can show
that A(x,y) defines a partial function, that is, its values are uniquely determined
for those inputs where the function terminates. However, it is perhaps not
apparent that the function actually is supposed to terminate for each input. In
particular, any implementation will quickly run out of memory. Therefore, it
does not seem obvious that A(x,y) defines a total function N0 ×N0 → N0.

Proposition 8. Ackermann’s function A(x,y) is a total function that yields
for each input (x, y) ∈ N0 ×N0 a non-negative integer value.

Proof. Let v denote the lexicographic order on N0 ×N0, that is,

(m1,m2) v (n1, n2) if and only if

{
m1 < n1,

m1 = n1 and m2 ≤ n2.

Then (N0 ×N0,v) is a well-founded set with least element (0, 0).
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Induction basis: The value A(0,0) is defined and equal to 1.
Induction step: Let us assume that A(m′, n′) is defined for all (m′, n′) @ (m,n).
Then we have the following three cases:
(a) If m = 0, then A(0, n) is defined and equal to n + 1, since A(0, y) = y + 1.
(b) If m 6= 0 and n = 0, then (m− 1, 1) @ (m, 0), so A(m− 1, 1) is defined by

induction hypothesis; hence A(m, 0) is defined and equal to A(m− 1, 1).
(c) If m 6= 0 and n 6= 0, then (m,n − 1) @ (m, n), so A(m,n − 1) is defined;

furthermore, (m− 1, y) @ (m, n) for all y in N0, so by induction hypothesis
A(m − 1, A(m, n − 1)) is defined. However, this is precisely A(m,n), so
A(m,n) is defined as well.
Therefore, the Ackermann function yields a nonnegative integer value for all

inputs from N0 ×N0.
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