From Proofs to Programs

Andreas Klappenecker

Primes. Let N = {1,2,3,...} be the set of natural numbers. We say that
a natural number b divides a natural number a if and only if there exists a
natural number ¢ such that a = bc. A natural number p greater than 1 is called
prime if and only if 1 and p are the only natural numbers dividing p. A natural
number n > 1 that is not prime is called composite.

Our goal is to write a program that allows us to test whether a given natural
number n greater than 1 is a prime. We will choose the functional programming
language Haskell for the implementation.

Let us denote by Ny = N \ {1} the set of natural numbers greater than 1.
Let ¢: No — Ny denote the function such that £(n) is the least natural number
greater than 1 dividing n. The function ¢ is well-defined, since there always
exist a divisor of n that is greater than 1, namely n itself; thus, there must exist
a smallest divisor k£ = ¢(n) of n in the range 2 < k < n.

Let us collect some simple observations about the function /.

Proposition 1. The value £(n) is a prime number for all n in Na.

Proof. Seeking a contradiction, we assume that there exists a number n in Ng
such that ¢(n) is not a prime. This implies that there exist numbers a and
b in Ny such that £(n) = ab. However, this would mean that a divides n and
a < £(n), contradicting the fact that £(n) is the smallest natural number greater
than 1 dividing n. Therefore, ¢(n) must be prime for all n in Ny, as claimed. O

Therefore, if n is composite, then ¢(n) must be smaller than n. In fact,
the next proposition shows that ¢(n) is considerably smaller than n when n is
composite.

Proposition 2. If n in Ny is a composite number, then £(n)? < n.

Proof. Let p = £(n). Since n is not prime, we have n = pa for some a in the
range p < a < n. Therefore, £(n)? = p?> < pa = n, which proves the claim. [

The last observation alone suffices to design a simple primality test. The
basic idea is to test whether any & in the range 2 < k < /n divides n. If we can
find such a divisor £ then n is evidently not a prime number; otherwise, n must
be a prime number. Indeed, the contrapositive of Proposition 2 states that if
k?* = ¢(n)? > n, then n must be a prime number.

2a

2b

August 5, 2008 primes.nw 2

Haskell. We choose the programming language Haskell for the implemen-
tation. This is a functional programming language named after the logician
Haskell Curry. You can find a copy of the Haskell interpreter hugs at the web
site www.haskell.org. After starting hugs, you can load a program file by typ-
ing

:1 myfilename.hs

where myfilename.hs is the filename of your program.

Implementation. We present the program in the literate programming style
introduced by Donald Knuth. Our program will be extracted from this text
into the file primes.hs; this is indicated by the first label in angled brackets.
The program contained in (primes.hs) is structured into four different parts, as
follows:
(primes.hs 2a)=

(primality test 3a)

(least divisor function 3b)

(least divisor in a range 3c)

(division test 2b)

The first part (primality test) of the program contains the primality test, and
the other three parts contain the functions needed to implement this function.
You can think of the terms in angled brackets as macros that will be expanded
somewhere in this document.

Since you are probably not familiar with Haskell, we start by explaining
the simplest function, which is contained in (division test). Recall that we
can express a natural number n as a multiple of a natural number d plus a
remainder r,

n=qd+r,

where 0 < r < d. We call ¢ the quotient and r the remainder. Haskell has a built-
in function to calculate r, called rem. Haskell uses prefix notation for functions.
This means that rem n d calculates the remainder » when n is divided by d. If
the remainder is 0, then we say that d divides n. In Haskell, the test for equality
is denoted by ==. The single equality = is also used and should be read as “is
by definition equal to”. Our division test is now defined as follows:

(division test 2b)= (2a)

divides d n = rem n d ==

Here, divides is a function that takes two arguments, d and n. It returns
True if and only if d divides n. The function divides d n is implemented by
checking whether the remainder of n divided by d is 0.

Our main function will be called prime and it takes one argument n. Thus,
prime n is supposed to return True if n is a prime number, otherwise it should
return False. It is assumed that the input n is an integer greater than 1. The
primality test takes advantage of the function ¢ that we have defined above.
Recall that n > 2 is a prime number if and only if n = ¢(n). In our Haskell

3a

3b

3c

August 5, 2008 primes.nw 3

program, the function ¢ will be called 1d. Thus, prime n simply checks whether
1d n is equal to n. In other words, the primality test is implemented as follows:
(primality test 3a)= (2a)
prime n = 1d n ==n
The function ¢, or 1d is Haskell, will be implemented in terms of a function 1df
that takes two arguments, k and n, and returns the least divisor of n in the range
from k to n, assuming that no divisor in the range [2,k — 1] = {2,...,k — 1}
has been found.
(least divisor function 3b)= (2a)
ldn=1df 2 n
All the work will be done in the function 1df. It is clear that 1df k n should
return the value k if k divides n. If k% exceeds n, then n does not have any
divisors m in the range k < m < \/n, so it should return n. Otherwise, 1df
k n is the same as 1df (k+1) n. In other words, we would like to define 1df
using three different cases.
Haskell allows us to do such case-by-case definitions of functions with the
help of so-called guarded equations. One writes

myfunction argl arg2 | mycondition = mydefinition

This means that the function myfunction has two arguments argl and arg?2
and is defined in terms of mydefinition given that the condition mycondition
holds. The condition is called a guarded equation in Haskell.

Our function 1df k n that returns the smallest divisor m of n in the range
k < m < nis defined as follows:

(least divisor in a range 3c)= (2a)
1df k n | divides k n = k
| k"2 >n=n
| otherwise = 1df (k+1) n

You will immediately recognize the three different cases in the implementation
of the function 1df. The last case is a recursive call to 1df. This is called a
tail recursion, and it is a simple way to implement the equivalent of a loop in a
functional programming language.

This completes our implementation of the primality test. If you load the file
primes.hs into Haskell and type prime 1111 then the Haskell interpreter will
respond with False, since 11 is the least divisor of 1111.

August 5, 2008 primes.nw 4

Literate Programming. Even though we have not specified the literate pro-
gramming macros in order, the extracted program follows precisely the outline
given above. The content of the file primes.hs is:

prime n = 1d n ==n
ldn=1df 2 n

1df k n | divides k n = k
| k"2 >n=n
| otherwise = 1df (k+1) n

divides d n = rem n d ==

This document was created with noweb by Norman Ramsey and ETEX by Don-
ald Knuth and Leslie Lamport. You should get familiar with EXTEX, since it is
the best way to produce documents that are nicely typeset.

The literate programming paradigm is that programs should be written in a
form that is a pleasure to read for humans, rather than in a form that is easily
understood by a computer. Of course, you do not need literate programming
to understand a tiny program with 6 lines of code. However, there is little
hope to understand a scarcely documented program consisting of thousands of
lines of code. In my experience, I insert more explanations when using literate
programming, simply because I want to make the I/ TEX document look better.

Norman Ramsey’s noweb scripts are a simple way to use literate program-
ming for any programming language. The documentation for noweb consists of
a single page, so you can easily learn it.

One of the most striking examples of literate programming is illustrated
in [D.E. Knuth, Computers & Typesetting, Volume B: TgX: The Program,
Addison-Wesley, Reading, MA, 1986, xviii+600pp.]. This book contains the
full implementation of the typesetting system TEX, on which KTEX is based.
Knuth offers $327.68=2'5¢ for every error found in this program. Talk about
confidence!

You can learn more about Haskell and its usage in discrete mathematics in
[K. Doerts, J. van Eijck, The Haskell Road to Logics, Maths, and Programming,
King’s College Publications, London, 2004]. T have taken the example discussed
here from the first chapter of this book. You can find more details on Haskell
there.

Exercise 1. Download and install hugs on your computer.

Exercise 2. Experiment with the program primes.hs. Modify it so that the
function arguments are of type integer. Make it robust so that it reports an
error if the integer provided is less than 2.

Exercise 3. Use Proposition 1 and design a Haskell program to factor a nat-
ural number into primes numbers. The program should return a list of prime
numbers such that their product is equal to the input.

