
A First Look at Propositional Logic

Andreas Klappenecker

There are many reasons why a computer scientist should study logic. For ex-
ample, logic underlies the reasoning in mathematical statements. In particular,
proving that a program meets its specification is argued with the help of logical
deductions. We begin by studying propositional logic, which is one of the sim-
plest logical theories. Nevertheless, propositional logic has a large number of
applications; in particular, it provides the foundation for combinatorial circuits
which implement the arithmetic logic unit of a processor. A nice property of
propositional logic is that the truth of the statements formulated in this logic
can be checked in a simple way by a computer. Surprisingly, propositional logic
leads to the most intriguing open problem in computer science.

1 Motivation

A proposition is a statement that is either true or false. Propositional logic
describes ways to combine true statements by means of connectives to produce
other true statements. Let us have a look at an example.

If it is asserted that ‘Jack is taller than Jill’ and ‘Jill can run faster than
Jack’ are true, then we can combine them to the true statement ‘Jack is taller
than Jill and Jill can run faster than Jack’. However, if Jill is actually taller
than Jack, then the first statement is false and the combined statement is false
as well.

Propositional logic allows us to formalize such statements. Additionally, the
expressions become more concise. For example, if we abbreviate the proposition
‘Jack is taller than Jill’ by A, and the proposition ‘Jill can run faster than Jack’
by B, then the combined statement A and B is expressed in propositional logic
in the form A ∧B, where ∧ is a connective formalizing the word ‘and’.

The connectives provided by propositional logic are

Name of Connective Symbol for Connective
negation ¬
and ∧
or ∨
exclusive or ⊕
conditional →
biconditional ↔

The precise meaning of these connectives will be explained below.

1



In the next section, we introduce a tool that is widely used in computer sci-
ence to specify formal languages. The Backus Naur form allows us to present the
syntax of propositional logic in a concise way. The meaning of the connectives
will be explained in Section 4.

2 The Backus Naur Form

A common way to specify a formal language is to use the so-called Backus
Naur form. The Backus Naur form consist of a set of derivation rules of the
form

〈symbol 〉 ::= 〈symbol1 〉〈symbol2 〉 · · · 〈symboln 〉
The left hand side of a derivation consists of a single symbol, called a non-
terminal symbol. The right hand side consists of a sequence of symbols. If
a symbol occurs only on the right hand side of derivations, then it is called a
terminal symbol or a token. A grammar consists of a finite number of such
derivation rules.

One nonterminal symbol is designated as the start symbol. Given the start
symbol, one applies a derivation rule that has the start symbol on the left hand
side and replaces it with the right hand side of the derivation rule. For example,
if 〈symbol 〉 is the start symbol, then the above rule would yield

〈symbol1 〉〈symbol2 〉 · · · 〈symboln 〉
Subsequently, derivation rules can be applied to replace any nonterminal symbol.
If one obtains after a finite number of steps a sequence consisting only of terminal
symbols, then the resulting sequence is said to belong to the language generated
by the grammar.

This is really quite a simple process. Let us have a look at a few examples
illustrating this concept.

Example 1. A single digit binary number can be specified in Backus Naur
form by

〈binary digit 〉 ::= 0
〈binary digit 〉 ::= 1

The start symbol is 〈binary digit 〉 and it is the only nonterminal symbol. There
are two terminal symbols, namely 0 and 1. We can apply either the first or the
second derivation rule, and respectively obtain 0 or 1. The right hand side of
both derivation rules consists of terminal symbols alone, so one cannot apply
further derivation rules. Thus, the language generated by this grammar is {0, 1}.

One frequently has several choices of productions rules that have the same
nonterminal symbol on the left hand side. Since such choices are common, the
Backus Naur form allows one to combine the different derivation rules into a
single derivation rule, where the alternatives are separated by |. For instance,
the grammar of the previous example can be formulated more succinctly as

〈binary digit 〉 ::= 0 | 1

2



This simply means that the nonterminal 〈binary digit 〉 can be replaced by either
0 or 1.

The next example is slightly more elaborate.

Example 2. One can specify multidigit binary numbers in the form

〈binary number 〉 ::= 〈binary number 〉〈binary digit 〉
〈binary number 〉 ::= 〈binary digit 〉
〈binary digit 〉 ::= 0 | 1

The start symbol is 〈binary number 〉. According to this grammar, 001 is a valid
binary number. Indeed, given the start symbol 〈binary number 〉, one applies the
first derivation rule twice to obtain 〈binary number 〉〈binary digit 〉〈binary digit 〉.
One can apply the second derivation rule to the first nonterminal symbol to
obtain

〈binary digit 〉〈binary digit 〉〈binary digit 〉.
Applying the last derivation rule to each of these three nonterminal symbols, we
can obtain 001 or any other three digit binary number. The language generated
by this grammar consists of all binary numbers {0, 1, 00, 01, 10, 11, 000, 001, . . .}.

One caveat is that there might be several sequence of derivation rules that
produce the same sequence of terminal symbols.

Remark. The Backus Naur form is one of the most common ways to specify
formal languages, including programming languages, network protocols, and
more. The languages that one can specify with the Backus Naur form are
context-free, as the derivation rules are applied without regard to the context
in which a nonterminal appears. A good source for everything related to formal
languages is [A.V. Aho, J.D. Ullman, The Theory of Parsing, Translation, and
Compiling, Volume I: Parsing, Prentice-Hall, 1972].

3 The Language of Propositional Logic

The language Prop of propositional logic is defined by the following grammar.

〈formula 〉 ::= ¬ 〈formula 〉
| (〈formula 〉 ∧ 〈formula 〉)
| (〈formula 〉 ∨ 〈formula 〉)
| (〈formula 〉 ⊕ 〈formula 〉)
| (〈formula 〉 → 〈formula 〉)
| (〈formula 〉 ↔ 〈formula 〉)
| 〈symbol 〉

The nonterminal 〈symbol 〉 can be any letter, possibly with a nonnegative integer
subscript. In other words, a 〈symbol 〉 is an element of the set

S = {a, a0, a1, . . . , b, b0, b1, . . . , z, z0, z1, . . . }.

3



The start symbol is 〈formula 〉. The terminal symbols are the elements in S,
the connectives, and the parentheses. We will refer to the elements in S as
propositional variables or variables for short.

Remark. We could have used any other countable set S to name the variables,
as long as it does not contain the parentheses and the connectives.

Example 3. The formula
((a ∧ b) ∨ ¬c)

belongs to the language of propositional logic. Indeed, this can be seen as
follows:

〈formula 〉 yields (〈formula 〉 ∨ 〈formula 〉)
yields ((〈formula 〉 ∧ 〈formula 〉) ∨ 〈formula 〉)
yields ((〈formula 〉 ∧ 〈formula 〉) ∨ ¬〈formula 〉).

By applying the last rule three times, we get

((〈symbol 〉 ∧ 〈symbol 〉) ∨ ¬〈symbol 〉),

and the symbols can be chosen to be a, b and c, respectively.

You might have wondered why each logical connective is enclosed in paren-
theses, except for the negation connective ¬. This ensures that we can associate
a unique binary tree to each proposition, called the formation tree. The for-
mation tree contains all subformulas of a proposition. A formation tree of a
proposition p has a root labeled with p and satisfies the following rules:
T1. Each leaf is an occurrence of a propositional variable in p.
T2. Each internal node with a single successor is labeled by a subformula ¬q

of p and has q as a successor.
T3. Each internal node with two successors is labeled by a subformula aXb of

p with X in {∧,∨,⊕,→,↔} and has a as a left successor and b as a right
successor.

Example 4. The formation tree of the formula ((a ∧ b) ∨ ¬c) is given by

((a ∧ b) ∨ ¬c)
ZZ½½

(a ∧ b)
JJ­­

a b

¬c

c

Remark. In a course on compiler construction, you will learn how to write a
parser for languages such as the one that we have specified for propositional
logic. You can check out lex and yacc if you want to write a parser for propo-
sitional logic in C or C++ now. In Haskell, you can use for example the parser
generator Happy.

4



4 The Semantics of Propositional Logic

Let B = {t, f} denote the set of truth values, where t and f represent true
and false, respectively. We associate to the logical connective ¬ the function
M¬ : B → B given by

P M¬(P )
f t
t f

Thus, M¬(P ) is true if and only if P is false. This justifies the name negation
for this connective. The graph of the function M¬ given above is called the
truth table of the negation connective. Similarly, we associate to a connective
X in the set {∧,∨,⊕,→,↔} a binary function MX : B × B → B. The truth
tables of these connectives are as follows:

P Q M∧(P, Q) M∨(P,Q) M⊕(P, Q) M→(P, Q) M↔(P, Q)
f f f f f t t
f t f t t t f
t f f t t f f
t t t t f t t

You should very carefully inspect this table! It is critical that you memorize
and fully understand the meaning of each connective.

The semantics of the language Prop is given by assigning truth values to
each proposition in Prop. Clearly, an arbitrary assignment of truth values is
not interesting, since we would like everything to be consistent with the meaning
of the connectives that we have just learned. For example, if the propositions a
and b have been assigned the value t, then it is reasonable to insist that a ∧ b
be assigned the value t as well. Therefore, we will introduce the concept of a
valuation, which models the semantics of Prop in an appropriate way.

A valuation v : Prop → B is a function that assigns a truth value to each
proposition in Prop such that
V1. vJ¬aK = M¬(vJaK)
V2. vJ(a ∧ b)K = M∧(vJaK , vJbK)
V3. vJ(a ∨ b)K = M∨(vJaK , vJbK)
V4. vJ(a⊕ b)K = M⊕(vJaK , vJbK)
V5. vJ(a → b)K = M→(vJaK , vJbK)
V6. vJ(a ↔ b)K = M↔(vJaK , vJbK)
holds for all propositions a and b in Prop. The properties V1–V6 ensure
that the valuation respects the meaning of the connectives. We can restrict a
valuation v to a subset of the set of proposition. If A and B are subsets of
Prop such that A ⊆ B, and vA : A → B and vB : B → B are valuations, then
vB is called an extension of the valuation vA if and only if vB coincides with
vA when restricted to A.

The consistency conditions V1-V6 are quite stringent, as the next theorem
shows.

5



Theorem 1. If two valuations v and v′ coincide on the set S of symbols, then
they coincide on the set Prop of all propositions.

Proof. Seeking a contradiction, we assume that there exist two valuations v and
v′ that coincide on S, but do not coincide on Prop. Thus, the set

C = {a ∈ Prop | vJaK 6= v′JaK}
of counter examples is not empty. Choose a counter example a in C of minimal
length, where the length of the proposition is defined as the number of terminal
symbols. Then a cannot be of the form a = ¬b, since the minimality of the
counter example implies that vJbK = v′JbK, which implies

vJaK = M¬(vJbK) = M¬(v′JbK) = v′JaK .

Similarly, a cannot be of the form bXc for some propositions b and c in Prop
and some connective X in {∧,∨,⊕,→,↔}. Indeed, by the minimality of the
counter example vJbK = v′JbK and vJcK = v′JcK, which implies

vJaK = MX(vJbK , vJcK) = MX(v′JbK , v′JcK) = v′JaK .

Therefore, a must be a symbol in S, but both valuations coincide on the set S
of symbols, so a cannot be an element of C, which is a contradiction.

An interpretation of a proposition p in Prop is an assignment of truth
values to all variables that occur in p. More generally, an interpretation of a set
Y of propositions is an assignment of truth values to all variables that occur in
formulas in Y . The previous theorem states that an interpretation of Prop has
at most one extension to a valuation on Prop.

It remains to show that each interpretation of Prop has an extension to a
valuation. For this purpose, we define the degree of a proposition p in Prop,
denote deg p, as the number of occurrences of logical connectives in p. In other
words, the degree function satisfies the following properties:
D1. An element in S has degree 0.
D2. If a in Prop has degree n, then ¬a has degree n + 1.
D3. If a and b in Prop are respectively of degree na and nb, then aXb is of

degree na + nb + 1 for all connectives X in {∧,∨,⊕,→,↔}.

Example 5. The proposition ((a ∧ b) ∨ ¬c) is of degree 3.

Theorem 2. Each interpretation of Prop has a unique extension to a valuation.

Proof. We will show by induction on the degree of a proposition that an in-
terpretation v0 : S → B has an extension to a valuation v : Prop → B. The
uniqueness of this extension is obvious from Theorem 1.

We set v(a) = v0(a) for all a of degree 0. Then v is certainly a valuation on
the set of degree 0 propositions.

Suppose that v is a valuation for all propositions of degree less than n ex-
tending v0. If a is a proposition of degree n, then it has a unique formation tree.

6



The immediate successors of a in the formation tree are labeled by subformulas
of a of degree less than n; hence, these successors have a valuation assigned.
Therefore, v has a unique extension to a using the consistency rules V1–V6.
We can conclude that v is a valuation on the set of all proposition of degree n
extending v0. Therefore, the claim follows by induction.

The key reason that the previous argument by induction works is that the
formation tree is unique. If there would exist several different trees for a single
formula, then such a recursive definition of a valuation would be ambiguous,
and the definition of the valuation v might not be well-defined.

Remark. Perhaps you would like to see a more direct argument based on the
grammar rather than on the degree of the formulas. One can use structural
induction, a generalization of induction to so-called freely generated recursively
defined sets. For a proof of the existence of valuations using structural induc-
tion, see [J.H. Gallier, Logic for Computer Science – Foundations of Automatic
Theorem Proving, John Wiley & Sons, 1987].

In this section, we have been a little bit pedantic by distinguishing the purely
syntactical form of a proposition such as (a → b) from its meaning M→(a, b).
Of course, it is a good idea to clearly distinguish between syntax and semantics
until the semantics of the connectives is clearly understood. From now on, we
will abuse notation and freely interpret (a → b) as the function M→(a, b).

Summary. Informally, we can summarize the meaning of the connectives as
follows:
1) The and connective (a ∧ b) is true if and only if both a and b are true.
2) The or connective (a ∨ b) is true if and only if at least one of a, b is true.
3) The exclusive or (a⊕ b) is true if and only if precisely one of a, b is true.
4) The implication (a → b) is false if and only if the premise a is true and the

conclusion b is false.
5) The biconditional connective (a ↔ b) is true if and only if the truth values

of a and b are the same.
An interpretation of a subset S of Prop is an assignment of truth values to all
variables that occur in the propositions contained in S. We showed that there
exist a unique valuation extending an interpretation of all propositions.

5 Tautologies and Satisfiability

In the previous two sections, we have introduced the language of propositional
logic and gave the propositions a meaning using valuations. In this section, we
will see propositional logic “at work”.

A proposition p is called a tautology if and only if vJpK = t for all valuations
v on Prop.

A proposition p is a tautology if and only if p evaluates to t under each
interpretation of the variables in p. If the proposition p contains n variables,
then we have to check all 2n possible interpretations of p.

7



Example 6. Let us verify that ((a → b) ↔ (¬a ∨ b)) is a tautology. This
proposition contains 2 variables, so we have to check 22 = 4 cases. The truth
table of this proposition can be obtained as follows:

a b (a → b) (¬a ∨ b) ((a → b) ↔ (¬a ∨ b))
f f t t t
f t t t t
t f f f t
t t t t t

Thus, the above proposition is indeed a tautology.

A proposition p is called satisfiable if and only if there exists a valuation v
such that vJpK = t. A proposition that is not sastisfiable is called unsatisfiable.

Example 7. We claim that ((a ⊕ b) → ¬(a ∨ b)) is satisfiable. Indeed, if we
choose a valuation v such that vJaK = f and vJbK = f , then vJa⊕ bK = f ; hence,
vJ((a⊕ b) → ¬(a ∨ b))K = t.

Example 8. The proposition (a ∧ ¬a) is unsatisfiable. Indeed, if we choose a
valuation v such that vJaK = t, then vJ¬aK = f , so vJ(a ∧ ¬a)K = f . The only
other interpretation is v′JaK = f , which implies v′J(a ∧ ¬a)K = f . Therefore, the
proposition (a ∧ ¬a) is unsatisfiable, as claimed.

Discussion. The development of mathematics and computer science is driven
by famous open problems. We digress a little bit and informally discuss some
fundamental problems of computational complexity theory.

� You might not be able to fully appreciate this discussion until you have
taken a course on analysis of algorithms. However, knowing the sig-

nificance of these questions will provide some additional motivation to study
propositional logic carefully.

We say that an algorithm is polynomial time if and only if there exists
some positive integer k such that for all inputs of length n the algorithm can
compute the result in at most nk + k steps. We assume here that the algorithm
is executed on a so-called Turing machine, a formal model of computation.

A decision problem is a computational problem that has a yes or no answer.
The complexity class P consists of all computational decision problems that can
be solved with a polynomial time algorithm.

Problem 1. Does there exist a polynomial time algorithm to determine whether
a proposition is satisfiable?

This problem baffles computer scientist already for more than three decades!
You might wonder why this problem is so challenging.

Let us digress to introduce some terminology. The complexity class NP con-
sists, loosely speaking, of all decision problems such that someone can convince

8



you of a yes answer with a short proof that can be checked by a program in
polynomial time. Of course, NP contains the complexity class P.

The problem to decide whether a given proposition p is satisfiable is in NP,
since a satisfying interpretation can serve as a proof that can be checked in
polynomial time by evaluating the proposition under this interpretation. It is
not difficult to show that Problem 1 has an affirmative answer if and only if
NP=P. However, the question whether NP is equal to P is considered the
most important open problem of computer science.

Another interesting problem concerns the tautology of propositions.

Problem 2. Does there exist a polynomial time algorithm to determine whether
a propositions is a tautology?

The complexity class coNP consists, loosely speaking, of all decision prob-
lems such that someone can convince you of a no answer with a short proof that
can be checked by a program in polynomial time.

The question whether a given proposition is a tautology is a typical example
of a decision problem in coNP. Indeed, it suffices to produce a non-satisfying
interpretation to prove that a proposition is not a tautology, and evaluating the
proposition under this interpretation can be done by a program in polynomial
time. Problem 2 has an affirmative answer if and only if coNP=P.

Problem 3. Is the problem to decide whether a proposition is a tautology con-
tained in the complexity class NP?

If Problem 3 has an affirmative answer, then NP=coNP. On the other
hand, if Problem 3 does not have an affirmative answer, then NP6=coNP,
which implies P 6=NP.

Remark. My guess is that NP6=coNP, whence NP6=P.

Remark. If you are interested in the precise definitions of the complexity classes
P, NP, and coNP, then the survey paper [S. Cook, The P versus NP problem,
http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf] is a good start.
By the way, the Clay Mathematics Institute gives you one million reasons to
study propositional logic.

6 Conclusion

We have seen that even propositional logic gives rise to interesting problems.
If you are interested in learning more about propositional and predicate logic,
then I can highly recommend the book [R. Smullyan, First-Order Logic, Dover,
1995]. This book served as a reference when writing these notes.

Remark. If you feel overwhelmed, then read again, but this time read the defi-
nitions very carefully. Whenever some term is defined, then try to understand
its meaning with the help of some examples. Our textbook contains numerous
examples (but lacks the development of the theory).

9


