The RSA Public-Key Cryptosystem
Andreas Klappenecker
CPSC 289

We will discuss in this lecture the basic principles of the RSA public-key cryptosystem, a system that is used in countless e-commerce applications. The RSA public-key cryptosystem nicely illustrates the number-theoretic principles that we have learned so far. Furthermore, the basic algorithm used in RSA will motivate us to study several other fundamental algorithms.

Suppose that Alice seeks a way that people can send her confidential messages by e-mail. The RSA cryptosystem allows her to publish a key that everyone can use to send her an encrypted message, but that is hard to decipher without a secret that is only known to her.

We need some notation before stating the protocol. Euler’s totient function \(\varphi : \mathbb{N} \rightarrow \mathbb{N} \) is defined as

\[
\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right),
\]

where the product ranges over all primes dividing \(n \). If \(n = pq \) is the product of two distinct primes \(p \) and \(q \), then \(\varphi(n) = (p-1)(q-1) \).

Key Generation:

- Alice selects two distinct large prime numbers \(p \) and \(q \), and computes their product \(n = pq \).
- She selects an odd integer \(e > 0 \) such that \(\gcd(e, \varphi(n)) = 1 \), and computes positive integers \(d \) and \(k \) such that \(ed - k\varphi(n) = 1 \).
- Alice publishes the pair \(P = (e, n) \), her public key. She carefully guards as a secret the factorization of \(n \), the product \(\varphi(n) = (p-1)(q-1)x \), the integer \(k \), and her secret key \(S = (d, n) \).

Encryption and Decryption:

- For simplicity, we assume that a message is encoded as an integer \(M \) in the range \(2 \leq M < n \).
- If Bob wants to send a message \(M \) to Alice then he looks up Alice’s public key and sends her the number

\[
C \equiv M^e \pmod{n}.
\]

- Alice uses her secret key to compute

\[
C^{ed} \equiv M^{ed} \pmod{n}.
\]

It turns out that \(M^{ed} \equiv M \pmod{n} \), so she recovers Bob’s message.
Fermat’s Little Theorem. We need to prove one interesting fact about integers modulo a prime p that is enormously useful. The theorem was stated by Fermat and later formally proved by Euler.

Theorem 1 (Fermat). Let p be a prime. If a is an integer, then

$$a^p \equiv a \quad \text{(mod } p).$$

Proof. The assertion holds for $a = 0$ and $a = 1$. Assuming that the assertion is true for a, then, by induction, $(a + 1)^p \equiv a^p + 1 \equiv a + 1$ (mod p). Therefore, the assertion holds for every natural number. If $p = 2$, then the assertion holds for all integers. If p is odd and $a^p \equiv a$ (mod p) holds, then $(-a)^p \equiv -a^p \equiv -a$ (mod p). Therefore, the theorem holds for all integers. □

Corollary 2. Let p be a prime. If a is an integer that is not divisible by p, then

$$a^{p-1} \equiv 1 \quad \text{(mod } p).$$

Proof. The hypothesis implies that $\gcd(a, p) = 1$; hence, there exist integers x and y such that $ax + py = 1$. Therefore, $ax \equiv 1$ (mod p). It follows from $a^p \equiv a$ (mod p) that $a^{p-1} \equiv xa^p \equiv xa \equiv 1$ (mod p) holds. □

The Chinese Remainder Theorem. The second ingredient that we need in our correctness proof of the RSA protocol is a statement about the simultaneous solvability of congruences.

Theorem 3 (Chinese Remainder Theorem). Let q and p be positive integers such that $\gcd(q, p) = 1$. For given integers x and y there exists an integer a such that

$$a \equiv x \quad \text{(mod } p),$$

$$a \equiv y \quad \text{(mod } q).$$

If a' satisfies $a' \equiv x$ (mod p) and $a' \equiv y$ (mod q), then $a \equiv a'$ (mod pq).

Proof. Since $\gcd(p, q) = 1$, there exist integers p' and q' such that

$$\gcd(q, p) = 1 = pp' + qq'.$$

In particular, we have $qq' \equiv 1$ (mod p) and $pp' \equiv 1$ (mod q). Therefore, the integer $a = ypp' + xqq'$ satisfies

$$a \equiv xqq' \equiv x \quad \text{(mod } p)$$

and

$$a \equiv ypp' \equiv y \quad \text{(mod } q).$$

Since $a \equiv a'$ (mod p), we have $a - a' = kp$ for some integer k. However, $a - a'$ is divisible by q as well, hence kp is divisible by q. As $\gcd(p, q) = 1$, it follows that q must divide k. Therefore, $a - a'$ is divisible by pq, so $a \equiv a'$ (mod pq), as claimed. □
Correctness of RSA. The correctness of the RSA algorithm follows from the following theorem.

Theorem 4. Let \(n = pq \) be a product of two distinct primes \(p \) and \(q \). Let \(e, d, \) and \(k \) be positive integers satisfying \(ed = 1 + k\varphi(n) \). Then

\[
M^{ed} \equiv M \pmod{n}
\]

holds for all integers \(M \).

Proof. It suffices to show that the two congruences

\[
M^{ed} \equiv M \pmod{p} \quad \text{and} \quad M^{ed} \equiv M \pmod{q}
\]

hold. Indeed, \(p \) and \(q \) are distinct primes, so \(\gcd(p, q) = 1 \), and the above congruences imply \(M^{ed} \equiv M \pmod{n} \) by the Chinese Remainder Theorem.

If \(M \equiv 0 \pmod{p} \), then certainly \(M^{ed} \equiv M \pmod{p} \). If \(M \not\equiv 0 \pmod{p} \), then \(M^{p-1} \equiv 1 \pmod{p} \) by Corollary 2; hence,

\[
M^{ed} \equiv M^{1+k\varphi(n)} \equiv M(M^{p-1})^{k(q-1)} \equiv M^{k(q-1)} \equiv M \pmod{p}.
\]

Therefore, \(M^{ed} \equiv M \pmod{p} \) holds for all integers \(M \). Replacing \(p \) by \(q \) in the previous argument shows that \(M^{ed} \equiv M \pmod{q} \) for all integers \(M \). \(\square \)