
Asymptotics

Andreas Klappenecker

§1 Introduction

If we have the choice between numerous algorithms for a given problem,
then we usually take ease of implementation, elegance, and estimates for
the time and space consumption into account. Typically, we would like to
get an estimate on how well our system can perform if the input reaches
realistic sizes.

Counting the number of operations in an execution often provides too
much detail, so we would like to get an easy estimate that tells us about
the behaviour of the algorithm for larger input sizes. The Big Oh notation
by Paul Bachmann and the little-oh notation by Edmund Landau are often
used in expressing upper bounds on the running time while suppressing a
certain level of detail.

Let us have a look at the definition of the Big Oh notation. Suppose that
f and g are functions from the positive integers Z+ into the real or complex
numbers. We say that f is Big Oh of g, and write f ∈ O(g), if there exists
a positive integer n0 and a real constant C such that |f(n)| ≤ C|g(n)| for
all n ≥ n0. Thus, O(g) denotes the set of functions

O(g) =

{

f : Z+ → C

∣

∣

∣

∣

there exists a positive integer n0 and a constant C
such that |f(n)| ≤ C|g(n)| for all integers n ≥ n0

}

.

For example, the set O(n2) contains the functions that are shown in the
next figure:

0 1 2 3 4
0

4

8

12

16 n2

1
2n2

3
4n + 2

8 ln n

Let us check one of the examples that are given in the previous graph.

1

Example 1. The graph suggests that 3/(4n)+2 ∈ O(n2) holds and we want
to prove that this is indeed the case. It suffices to show that |34n+2| ≤ 3|n2|
holds for all integers n ≥ 1. If we divide both sides of this inequality by n2,
then the resulting function on the left-hand side is g(n) = 3

4n−1+2n−2. The
function g(n) is monotonically decreasing and we have g(1) ≤ 3. Therefore,
we can conclude that g(n) ≤ 3 holds for all integers n ≥ 1, and this fact
implies our claim.

Remark 1. A more restrictive definition of the Big Oh notation is often used in
the Computer Science literature. For instance, Knuth defines O(f) in the Art of
Computer Programming to be the set of all functions g(n) such that there exists
a constant C and an integer n0 such that |g(n)| ≤ Cf(n) for all n ≥ n0. In this
restrictive definition, the values f(n) must be nonnegative real numbers for almost
all n, otherwise O(f) will be the empty set. In the analysis of number-theoretic
algorithms it is sometimes helpful to allow functions with complex values.

If we compare the asymptotic growth of the two functions, then f(n) ∈
O(g(n)) means intuitively that f(n) does not grow faster than g(n). For
instance, n3 6∈ O(n2), because the function n3 grows more rapidly than any
of the functions Cn2 for all C > 0.

0 1 2 3
0

5

10

15

20

25

30

35 n3

n2

2n2

Exercise 1. Use the definition of the Big Oh notation to prove that n3 6∈
O(n2) holds.

Exercise 2. Show that f(n) ∈ O(f(n)).

Notation. The Big Oh notation is used in the literature in a somewhat
idiosyncratic way. By tradition, the expression f(n) ∈ O(g(n)) is usually
written in the form f(n) = O(g(n)). For example, n2 ln n = O(n3) means
n2 ∈ O(n3). We also find expressions such as n + O(n2) = O(n3), and this
should be interpreted as n + O(n2) ⊆ O(n3).

2

There is basically nothing wrong with the equality signs, as long as you
know how to interpret them. You should be aware of the fact that the
sign “=” is not symmetric in expressions involving Big Oh notations. For
instance, it does not make sense to write n + O(n2) = n2, since the set of
functions n + O(n2) is not a subset of {n2}.

Warning. Always interpret an equality sign “=” involving Big Oh
expressions as “∈” or “⊆”.

Exercise 3. You find in a paper the formula O(f(n)) − O(f(n)) = 0, and
subsequently the authors derive numerous nonsensical results from this for-
mula. What was the error of the authors, and what should the correct
right-hand side of this formula have been?

Exercise 4. Suppose that f(n) = O(g(n)) and g(n) = O(h(n)). Show that
the Big Oh notation is transitive in the sense that f(n) = O(h(n)) holds.

§2 Simple Criteria

How can we prove that f(n) is an element of O(g(n))? We derive in this
section some basic criteria that are helpful in this regard. Our first lemma
is a simple way to establish f(n) = O(g(n)), but it is not always applicable.

Lemma 1. Let f and g be functions from the positive integers to the complex

numbers such that g(n) 6= 0 for all n ≥ n0 for some positive integer n0. If

the limit limn→∞ |f(n)/g(n)| exists and is finite then f(n) = O(g(n)).

Proof. If limn→∞ |f(n)/g(n)| = C, then for each ε > 0 there exists a positive
integer n0(ε) such that C − ε ≤ |f(n)/g(n)| ≤ C + ε for all n ≥ n0; this
shows that |f(n)| ≤ (C + ε)|g(n)| for all integers n ≥ n0(ε). It follows that
f(n) = O(g(n)).

The assumption that g(n) 6= 0 for almost all n is usually satisfied for the
functions that occur in the analysis of algorithms. However, the limit of the
quotient |f(n)/g(n)| might not necessarily exist.

Example 2. If f(n) = (1 + (−1)n)n2 and g(n) = n2, then the limit
limn→∞ |f(n)/g(n)| does not exist because the value of |f(n)/g(n)| keeps
fluctuating between 0 and 2. However, we have f(n) = O(g(n)).

3

Let us recall a notion from calculus. Suppose that x = (xn)∞n=1 is a
sequence numbers with values in the extended real line [−∞,∞]; that is,
the value of xn is a real number or ±∞ for each n ∈ Z+. We let bk denote
the least upper bound of the tail (xk, xk+1, . . .) of the sequence x, that is,
we define

bk = sup {xk, xk+1, . . . } for all k ∈ Z+.

The numbers bk form a nonincreasing sequence. The limit superior of the
sequence x is defined as

lim sup
n→∞

xn = lim
k→∞

bk.

The limit superior exists for all sequences over the extended real numbers.

Example 3. If xn = 1+(−1)n, then the limit superior of the sequence (xn)
is given by lim supn→∞ xn = 2, since the least upper bound bk of the tail
sequence (xn)∞n=k is bk = 2 for all k ≥ 1.

Example 4. We illustrate the concept of the limit superior with another
simple example. Suppose that x = (xn)∞n=1 is a sequence of real numbers
that can be partitioned into an increasing subsequence (x2n−1)

∞
n=1 and a

decreasing subsequence (x2n)∞n=1, as shown in the next figure.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

The sequence x is depicted by black dots and the sequence of least upper
bounds (bk) is depicted by lines. Notice that the values bk are monotonically
decreasing.

We use the limit superior to refine the criterion given in Lemma 1.

Lemma 2. Let f and g be functions from the positive integers to the complex

numbers such that g(n) 6= 0 for all n ≥ n0 for some positive integer n0. We

have lim supn→∞ |f(n)/g(n)| <∞ if and only if f(n) = O(g(n)).

Proof. If lim supn→∞ |f(n)/g(n)| = C, then for each ε > 0 we have

|f(n)|/|g(n)| > C + ε

4

for at most finitely many positive integers; so |f(n)| ≤ (C + ε)|g(n)| holds
for all integers n ≥ n0(ε) for some positive integer n0(ε), and this proves
that f(n) = O(g(n)).

Conversely, if f(n) = O(g(n)), then there exists a positive integer n0 and
a constant C such that g(n) 6= 0 and |f(n)|/|g(n)| ≤ C for all n ≥ n0. This
implies that lim supn→∞ |f(n)/g(n)| ≤ C.

Exercise 5. Suppose that p(n) = a0 + a1n + · · ·+ amnm is a polynomial of
degree m with complex coefficients. Show that p(n) = O(nk) for all k ≥ m,
and p(n) 6= O(n`) for 0 ≤ ` < m.

Exercise 6. Show that for fixed k, we have

(

n

k

)

=
nk

k!
+ O(nk−1) and

(

n + k

k

)

=
nk

k!
+ O(nk−1),

where
(

n
k

)

= n(n− 1)(n − 2) · · · (n− k + 1)/k! is the binomial coefficient.

Exercise 7. Show that n/(n + 1) = 1 + O(1/n).

Exercise 8. Sometimes f(n) = O(g(n)) is written as f(n) � g(n). Ex-
ercise 2 asserts that this relation is reflexive, f(n) � f(n), and Exercise 4
shows that this relation is transitive. Prove that there exist functions f(n)
and g(n) such that neither f(n) � g(n) nor g(n) � f(n) holds; so one cannot
always compare the asymptotic growth of two functions.

Exercise 9. Prove or disprove: en = O(2n).

Exercise 10. Prove or disprove: nlnn = O(e(ln n)2).

§3 Big Oh Calculus

One advantage of Big Oh expressions is that they are generally easier to
manipulate than accurate expressions. In this section, we collect some rules
that are simple consequences of the Big Oh definition.

Constants. If c is a nonzero constant, then

cO(f(n)) = O(f(n)), (1)

O(cf(n)) = O(f(n)). (2)

Idempotency. The Big Oh operator is idempotent, meaning that

O(O(f(n)) = O(f(n)). (3)

5

Multiplications. The multiplication of Big Oh expressions follows the rules

O(f(n))O(g(n)) = O(f(n)g(n)), (4)

O(f(n)g(n)) = f(n)O(g(n)). (5)

Absorbtion. We can simplify Big Oh expressions using the rule

O(f(n)) + O(g(n)) = O(g(n)) provided that f(n) = O(g(n)). (6)

Powers. For all positive integers k, we have

(f(n) + g(n))k = O
(

(f(n))k
)

+ O
(

(g(n))k
)

. (7)

Linear Combinations. If f(n) = O(h(n)) and g(n) = O(h(n)), then

af(n) + bg(n) = O(h(n)) for all a, b ∈ C. (8)

Swap. The next rule allows you to swap Big Oh terms.

If f(n) = g(n) + O(h(n)) then g(n) = f(n) + O(h(n)). (9)

You should prove all these rules to gain a good working knowledge of
Big Oh calculations.

Exercise 11. Prove the multiplication by constant rules (1) and (2).

Exercise 12. Prove the idempotency rule given by equation (3).

Exercise 13. Prove the multiplication rules (4) and (5).

Exercise 14. Prove the absorbtion rule (6) and the power rule (7).

Exercise 15. Prove the linear combination rule given in (8).

Exercise 16. Prove the rule (9).

Exercise 17. Find examples for each of the rules (1)–(9) and at least five
examples of an erroneous usage of the Big Oh notation in recent papers or
books of Computer Science.

6

§4 Analysis of the Running Time

One source for Big Oh expressions in the analysis of algorithms are estimates
for the worst case running time of an algorithm. Typically, we would like
to get a rough idea how fast the algorithm will be for an input of a certain
size. We can use the following set of rules to obtain such an estimate.

1. Suppose that we have a language with primitive operations that in-
clude assignments ←, arithmetic operations such as addition +, sub-
traction −, multiplication ∗, comparison operators =, 6=, ≤, and ≥, a
dereferencing operator ∗, an array index operator [], and more. We
assume that the primitive operations have constant time O(1).

2. The running time of a compound statement

S1;S2;

is O(t1) + O(t2) if the running times of the statements S1 and S2 are
respectively O(t1) and O(t2).

3. The running time of the conditional expression

if S1 then S2; else S3; fi;

is bounded by O(t1) + O(max(t2, t3)), where tk is the running time of
the statement Sk with k = 1, 2, 3.

4. The running time of a for-loop

for k = a to b do

S1;
od;

is O((b − a + 1)max(t1, 1)), where t1 is a bound on the running time
of the statement S1.

5. The running time of a call to a function f that is defined by

f(param)
S2;

is given by O(t1) + O(t2), where O(t1) is the time it takes to perform
the assigments of the parameter and O(t2) is a bound on the running
time of the function body S2.

This list is incomplete, but it should be clear how to create rules for further
language constructs. It should be emphasized that one may obtain too

7

pessimistic estimates for the running time; a more refined analysis that
counts the operations more precisely is sometimes appropriate.

Example 5. Suppose that you want to write a program to evaluate a poly-
nomial

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0,

so for a given input x, you would like to know the value y = p(x). You can
save multiplications by using the Horner scheme

p(x) = (· · · ((anx + an−1)x + an2
)x + · · · a1)x + a0.

The following algorithm is based on the Horner scheme:

1: horner(int a[], int n, int x)
2: int res = a[n];
3: for k = n− 1 down to 0 do

4: res = res * x + a[i];
5: od

6: return res;

We need O(1) time steps to assign the parameters in line 1 and O(1)
timesteps do the assignment in line 2. The statement in line 4 can be
executed in O(1) steps, and the for-loop is repeated n times. So lines 3–5
have O(n) running time, and line 6 is executed once in O(1) time. There-
fore, we can conclude that the overall running time of the algorithm is
O(1) + O(1) + O(n) + O(1) = O(n).

Exercise 18. Give a more detailed analysis of the horner algorithm which
takes into account that the primitive operations can have different execution
times, such as τ∗ for the multiplication operation, τ+ the execution time for
an addition operation, τ[] the time for the dereferencing operation and so
on. Account for all operations in the execution of this algorithm without
using Big Oh notation.

Exercise 19. Gives at least two different reasons why in modern computer
architectures the approach taken in the previous exercise cannot provide a
realistic measure of the total execution time.

§5 Examples

In this section, we give a number of examples that illustrate the material
that we have learned so far. Our first example is borrowed from Sedgewick
and Flajolet [4].

8

Example 6. Suppose that an algorithm uses a for loop with n+1 repetitions
and calls in the k iteration a subroutine that takes k! steps, then the overall
complexity of the algorithm is proportional to the sum

∑n
k=0 k!. The terms

are so rapidly increasing that the last term determines gives a good estimate
for the whole sum. Indeed,

n
∑

k=0

k! = n!

(

1 +
1

n
+

n−2
∑

k=0

k!

n!

)

.

The n− 1 terms in the last sum are less than (n(n− 1))−1 = O(n−2), so the
sum is O(n−1). Therefore, we have

∑n
k=0 k! = n!(1 + O(n−1)).

Our second example, taken from [1], shows how an estimate of an exact
number can lead to an estimate that is easier to interpret. This example
illustrates how rule (5) is used in practice. We note here without proof that
(1 + O(ε))−1 = 1 + O(ε); this property will become obvious in the next
section.

Example 7. Suppose that you have determined that the number of winning
positions in a game are given by

W = bn/kc+
1

2
k2 +

5

2
k + 3 with k = b 3

√
nc.

We observe that k = n1/3 + O(1) = n1/3(1 + O(n−1/3)), where the last
equality follows from (5). Consequently, we have

k2 = n2/3(1 + O(n−1/3))2 = n2/3(1 + O(n−1/3)) = n2/3 + O(n1/3).

We also have

bn/kc = n1−1/3(1 + O(n−1/3))−1 + O(1)

= n2/3(1 + O(n−1/3)) + O(1) = n2/3 + O(n1/3).

Therefore, the total number of winning position is

W = n2/3 + O(n1/3) +
1

2
(n2/3 + O(n1/3)) +

5

2
(n1/3 + O(1))

=
3

2
n2/3 + O(n1/3).

A frequent task in the analysis of algorithms is to estimate a sum for
which no closed form solution is known. The following example from [2]
shows how partitioning of the sum can lead to good estimates.

9

Example 8. Suppose that we want to estimate the sum

f(n) =

n/2
∑

d=3

1

d(n/d)d

for large n. We observe that the terms within the sum behave quite differ-
ently for different sizes of d. In such a case, it is often advisable to divide
the sum into smaller parts and try to estimate the parts. For example, we
can express f(n) as

f(n) ≤ Σ1 + Σ2 + Σ3 =
8
∑

d=3

1

d(n/d)d
+

√
n

∑

d=8

1

d(n/d)d
+

n/2
∑

d=
√

n

1

d(n/d)d
.

There is not general rule how to break such a sum into parts, and this can
be considered as the art of asymptotics. We notice that

Σ1 ≤
8
∑

d=3

1

3(n/8)3
= O(n−3),

where we replaced the values of d with its bound so that each individual
term in the sum becomes larger. We repeat the same trick for Σ2 and get

Σ2 ≤
√

n
∑

d=8

1

8(n/
√

n)8
= O(n−4√n),

where the bound is obtained by observing that we sum O(
√

n) terms of size
O(n−4). Repeating once again the same trick, we notice that the third sum
Σ3 consists of very small terms, since

Σ3 ≤
n/2
∑

d=
√

n

1√
n2

√
n

= O

(√
n

2
√

n

)

.

Therefore, f(n) = O(n−3) + O(n−4√n) + O(
√

n2−
√

n) = O(n−3).

§6 Finite Sums

It is often possible to obtain a useful estimate of the asymptotic value of a
finite sum by comparing it with an integral. This is a useful application of
knowledge that you have gained in your calculus courses. The next figure

10

shows that the sum of the values that is represented by the height of the
shaded bars can be approximated by the integral of the function values; the
next theorem allows us to determine the error that that we make in such a
comparison.

0 1 2 3 4 5 6 7
0

1

2

3

We need to introduce some notation. If x is a real number, then we
denote by bxc the largest integer less than or equal to x, and by {x} the
fractional part x− bxc.
Theorem 3 (Euler). If a function f : R → R has a continuous derivative

on the interval [1, n], then

n−1
∑

k=1

f(n) =

∫ n

1
f(x)dx− 1

2
(f(n)− f(1)) +

∫ n

1
({x} − 1/2)f ′(x)dx.

Proof. Integration by parts shows that for an integer k one obtains
∫ k+1

k
({x} − 1

2
)f ′(x)dx = (x− k − 1

2
)f(x)

∣

∣

∣

k+1

k
−
∫ k+1

k
f(x)dx

=
1

2
(f(k + 1)− f(k))−

∫ k+1

k
f(x)dx.

If we add both sides of the equation for 1 ≤ k < n, then we obtain

∫ n

1
({x} − 1

2
)f ′(x)dx =

n−1
∑

k=1

f(k) +
1

2
(f(n)− f(1))−

∫ n

1
f(x)dx,

and this proves our claim.

Remark 2. We could have written Euler’s summation formula in the form
n
∑

k=2

f(k) =

∫ n

1
f(x)dx +

∫ n

1
{x}f ′(x)dx,

but the form given in Theorem 3 has a natural generalization using so-called
Bernoulli polynomials, as we will see below.

11

Example 9. We want to show that the Harmonic number Hn−1 =
∑n−1

k=1 1/k
can be estimated by

Hn−1 = log n + γ + O(n−1) for some constant γ.

If we set f(x) = 1/x then its derivative is given by f ′(x) = −1/x2 and
Euler’s summation formula yields

n−1
∑

k=1

1

k
= ln n− (

1

n
− 1)−

∫ n

1

{x}
x2

dx

= ln n + 1− 1

n
−
∫ ∞

1

{x}
x2

dx +

∫ ∞

n

{x}
x2

dx

The improper integral
∫∞
1 {x}x−2dx exists, since it is dominated by

∫∞
1 x−2dx,

and

0 ≤
∫ ∞

n

{x}
x2

dx ≤
∫ ∞

n

1

x2
dx =

1

n
.

Thus, we can conclude that

n−1
∑

k=1

1

k
= lnn + 1−

∫ ∞

1

{x}
x2

dx + O(n−1), (10)

and this proves our claim if we set γ = 1−
∫∞
1 {x}/x2dx. In fact, it follows

from (10) that γ is the famous Euler-Mascheroni constant

γ = lim
n→∞

n−1
∑

k=1

1/n − ln n ≈ 0.577215 · · · .

Exercise 20. Show that

n−1
∑

k=1

ka =
n1+a

1 + a
+ O(na) if a ≥ 0.

Exercise 21. The Riemann zeta function is defined by the equation

ζ(s) =

∞
∑

n=1

1

ns
if s > 1 and by ζ(s) = lim

x→∞

(

x
∑

n=1

1

ns
− x1−s

1− s

)

if 0 < s < 1.

Show that

n
∑

k=1

1

ks
=

n1−s

1− s
+ ζ(s) + O(n−s) if s > 0 and s 6= 0.

12

Euler’s General Summation Formula. Euler developed the idea be-
hind Theorem 3 even further. We contend ourselves with a brief exposition
of the general summation formula without giving proofs. Let us first state
the result and then explain all the notations.

Theorem 4. Suppose that f(x) has m continuous derivatives in the inter-

val [1, n]. Then

n−1
∑

k=1

f(k) =

∫ n

1
f(x)dx +

m
∑

k=1

Bk

k!
(f (k−1)(n)− f (k−1)(1)) + Rmn,

where

Rmn =
(−1)m+1

m!

∫ n

1
Bm({x})f (m)(x)dx.

The coefficients Bk in the previous theorem are the Bernoulli numbers
that are defined by the infinite series

z

ez − 1
=

∞
∑

k=0

Bk

k!
zk.

One can show that

(B0, B1, B2, B3, B4) = (1,−1

2
,
1

6
, 0,− 1

30
),

and B3 = B5 = B7 = B9 = · · · = 0. The residue term Rnm contains a
so-called Bernoulli polynomial Bm(x) that is defined by

Bm(x) =
n
∑

k=0

(

n

m

)

Bkx
m−k.

Example 10. We illustrate how Theorem 4 can be used to derive Stirling’s
approximation formula for n!, following Knuth [3]. If we set f(x) = ln x,
then f (k−1)(x) = (−1)k(k − 2)!/xk−1 and Theorem 4 yields

ln(n− 1)! = n ln n− n + 1− 1

2
ln n +

m
∑

k=2

Bk(−1)k

k(k − 1)

(

1

nk−1
− 1

)

+ Rmn.

We note that the limit σ given by

lim
n→∞

(

ln n!− n ln n + n− 1

2
ln n

)

= 1 +

m
∑

k=2

Bk(−1)k+1

k(k − 1)
+ lim

n→∞
Rmn

13

exists, since limn→∞ Rmn = − 1
m

∫∞
1 Bm({x})/xmdx, and this improper inte-

gral exists since it is bounded by c
∫∞
1 x−mdx for some constant c. Therefore,

we obtain

lnn! = (n +
1

2
) ln n− n + σ +

m
∑

k=2

Bk(−1)k

k(k − 1)nk−1
+ O

(

1

nm

)

.

In particular, if we choose m = 5, then we obtain

ln n! = (n +
1

2
) ln n− n + σ +

1

12n
− 1

360n3
+ O

(

1

n5

)

.

Taking the exponential of both sides yields

n! = eσ√n
(n

e

)n
exp

(

1

12n
− 1

360n3
+ O

(

1

n5

))

.

It can be shown that eσ =
√

2π. Using the expansion exp(x) = 1 + z +
z2/2! + z3/3! + z4/4! + O(z5), we obtain as a final result

n! =
√

2πn
(n

e

)n
(

1 +
1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+ O

(

1

n5

))

.

As a mnemonic, the product of the numbers 1, 2, . . . , n is roughly equal to
the product of the n equal numbers (n/e); the above expressions is of course
much more precise than that.

Exercise 22. Check the last step in the derivation of Stirling’s formula and
show that the two expressions for n! are equal.

Exercise 23. Approximate 8! using Sterling’s formula.

§7 Further Reading

The book [1] contains an in-depth discussion of the tricks of the trade in
asymptotics. Knuth [3] gives a brief overview of asymptotic techniques.
Applications of such methods can be found throughout The Art of Computer

Programming book series. A discussion of asymptotic series is contained
in [4].

14

References

[1] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, Reading, MA, 1994.

[2] D.H. Greene and D.E. Knuth. Mathematics for the Analysis of Algo-

rithms. Birkhäuser, Boston, 1981.

[3] D.E. Knuth. The Art of Computer Programming – Fundamental Algo-

rithms, volume I. Addison-Wesley, Reading, MA, 3rd edition, 1997.

[4] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algo-

rithms. Addison-Wesley, Reading, MA, 1996.

15

