
Basics of the Big Oh Notation

Suppose that g is a function from the positive integers to the real numbers.
Recall that

O(g) =

{

f : Z+ → C

∣

∣

∣

∣

there exists a positive integer n0 and a constant C
such that |f(n)| ≤ C|g(n)| for all integers n ≥ n0

}

.

O(1) constant complexity
∩

O(log n) logarithmic complexity
∩

O(n) linear complexity
∩

O(n log n)
∩

O(n2) quadratic complexity
∩

O(n3) cubic complexity
∩

O(2n) exponential complexity
∩

O(en) exponential complexity

Figure 1: A hierarchy of common complexity classes.

Lemma 1. If f ∈ O(g), then O(f) ⊆ O(g).

Proof. By definition, f ∈ O(g) means that there exists an integer n0 > 0
and a real number C such that |f(n)| ≤ D|g(n)| for all n ≥ n0. Similarly, if
f0 ∈ O(f), then there exists an integer m0 > 0 and a real number D such
that |f0(m)| ≤ C|f(m)| for all m ≥ m0. Therefore, |f0(n)| ≤ CD|g(n)| for
all n ≥ max(n0,m0); thus, f0 ∈ O(g).

Recall the following simple fact from the lecture notes on Asymptotics.

Lemma 2. If f and g are functions from the positive integers to the complex

numbers such that g(n) 6= 0 for all large n, then limn→∞ |f(n)/g(n)| = 0
implies f = O(g).

1

Theorem 3. The inclusions given in Figure 1 hold.

Proof. We have

lim
n→∞

1

log n
= lim

n→∞

log n

n
= lim

n→∞

n

n log n
= lim

n→∞

n log n

n2
= 0

and

lim
n→∞

n2

n3
= lim

n→∞

n3

2n
= lim

n→∞

2n

en
= 0.

By Lemma 2, this implies 1 = O(log n), log n = O(n), n = O(n log n),
n log n = O(n2), n2 = O(n3), n3 = O(2n), 2n = O(en). The claim follows
from Lemma 1.

We will encounter many examples of algorithms that have a running time
that belongs to one of the classes given in Figure 1. The standard template
library of C++ provides the following examples.

Example 1. The stack container class in STL (which happens to be a special
case of an double-ended queue) supports push, pop, top operations that take
constant time O(1).

Example 2. The set container class in the STL supports insert, find, erase
operations that take O(log N) operations when the set is of size N .

Example 3. The STL support the data structure of a heap, which is a partic-
ular organization of a sequence for instance used in sorting. The push heap

and pop heap operations take O(log N) time, make heap takes O(N) time,
and sort heap takes O(N log N) time.

Example 4. The min and max operations on container classes take O(N)
time.

For more examples, see [D.R. Musser, G.J. Derge, and A. Saini, STL Tu-

torial and Reference Guide, Addison-Wesley, 2001]. For more details about
the implementation of the standard template library, see [P.J. Plauger,A.A.
Stepanov, M. Lee, and D.R. Musser, The C++ Standard Template Library,
Prentice Hall, 2001].

2

