
Heapsort

Andreas Klappenecker

Heapsort. A heap is a vector v[1..n] that represents a nearly complete binary
tree. The root of the tree is v[1], the left child of the node v[i] is stored at v[2i],
and the right child is stored at v[2i + 1].

A max-heap satisfies v[i] ≥ v[2i] for all i such that 2i ≤ n, and v[i] ≥ v[2i+1]
for all i such that 2i + 1 ≤ n. For instance,

(v[1], v[2], . . . , v[7]) = (6, 2, 5, 0, 1, 4, 3)

represents a max-heap. One can create a max-heap from an unsorted vector in
linear time.

Heap sort creates a heap from the unsorted input vector, swaps the elements
v[1] and v[n] so that the largest element is contained in v[n], restores v[1..n− 1]
to a heap, and recursively applies the same procedure the heap v[1..n−1]. After
n − 1 iterations, the vector is sorted.

The Program. We illustrate this concept by giving an implementation that
generates a random input vector and prints each step of the heap sort algorithm.
We use C++ and the standard template library for this task.

〈heap.cpp〉≡
#include<iostream>

#include<algorithm>

#include<vector>

#include<iterator>

#include<time.h>

using namespace std;

int main() {

int len = 7;

int i;

vector<int> v(len);

〈random heap〉
〈heap sort〉

}

The program is contained in the file heap.cpp. It creates a random vector of
length 7 with integer entries from 0 to 6, builds a heap in linear time, and
prints this heap. The details are explained later in the definition of the code

1



September 3, 2005 heap.nw 2

chunk 〈random heap〉. The second part of the program performs the heap sort
algorithm and prints each step.

Let us have a look at the details. The implementation creates the vector
v = (1, 2 . . . , 7), and applies a random permutation. The standard library call
make heap creates a max-heap in linear time and prints the resulting heap.

〈random heap〉≡
for(i=0; i<len; i++)

v[i] = i;

srand(time(NULL));

random_shuffle(v.begin(), v.end());

make_heap(v.begin(), v.end());

cout << "heap ";

copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));

The heap sort algorithm swaps the largest element v[1] with the element v[n]
from the end of the heap, and restores the heap property of v[1..n−1] in O(log n)
time; these operations are realized by the call pop heap. We print the resulting
heap v[1..n − 1] and repeat the same procedure with this smaller heap in the
next iteration. So we extract the second largest element and restore the heap
property of v[1..n − 2], and so on.

〈heap sort〉≡
for(i=len; i>=2; i--) {

cout << endl << "top element " << v[0];

pop_heap(v.begin(), v.begin()+i);

cout << ", remaining heap ";

copy(v.begin(), v.begin()+i-1, ostream_iterator<int>(cout, " "));

}

A sample run might produce, for instance, the output

heap 6 3 5 1 2 0 4

top element 6, remaining heap 5 3 4 1 2 0

top element 5, remaining heap 4 3 0 1 2

top element 4, remaining heap 3 2 0 1

top element 3, remaining heap 2 1 0

top element 2, remaining heap 1 0

top element 1, remaining heap 0

The algorithms extracts in each step the largests elements, namely 6, 5, 4, 3, 2, 1, 0.
After the execution of the algorithm, the vector v[1..7] contains (1, 2, . . . , 7), as
desired.


