Problem Set 8

CPSC 311 Analysis of Algorithms
 Andreas Klappenecker

The assignment is due next Monday, December 5, before class.
Solve the following exercises from the textbook; note that the book distinguishes between problems and exercises.

1. Make sure that you fully understand the problems SAT, 3-CNF-SAT=3-SAT, CLIQUE, VERTEX-COVER, HAM-CYCLE, TSP, SUBSET-SUM, INDEPENDENT SET (cf. Problem 34-1), k-COLOR (cf. Problem 34-3).
2. Let ϕ be a boolean formula in 3-CNF. An \neq-assignment to the variables of ϕ is one where each clause contains two literals with unequal truth values. In other words, an \neq-assignment satisfies ϕ without assigning three true literals in any clause.
(a) Show that the negation of a \neq-assignment to ϕ is also a \neq-assignment.
(b) Let \neq SAT be the collection of boolean formulas in 3-CNF that have an $\neq-$ assignment. Show that $3-\mathrm{SAT} \leq_{P} \neq \mathrm{SAT}$, and that \neq SAT is NP-complete. [Hint: Replace each clause $\left(y_{1} \vee y_{2} \vee y_{3}\right)$ by two clauses $\left(y_{1} \vee y_{2} \vee z_{i}\right)$ and $\left(\neg z_{i} \vee y_{3} \vee b\right)$, where z_{i} is a new varable for each clause and b is a single additional new variable.]
3. Problem 34-3 d,e,f (that is, prove that $3-\mathrm{SAT} \leq_{P} 3$-COLOR).
4. Problem 34-1

Make sure that you structure your answers well. Please typeset your solutions in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ or turn in a neatly written solution.

