
Proofs without Goofs

Andreas Klappenecker

The basic principle of a mathematical proof is quite simple. You assume that the
hypothesis of your claim is true, and then you go on to show that the conclusion
must hold by just using logical deductions and known facts.

The primary goal is to develop a well-structured, simple, readable proof.

It is often a good idea to revise a proof several times until you get a satisfying
clarity and elegance. I recommend you to keep in mind the following remarks.

• Each statement in the theorem or proof should be a complete English
sentence. The usual punctuation rules apply, even when you use formulas.
Basically, if you read it out loud, then it should be a well-formed sentence.

• Do not use formal logic symbols, such as ‘∃′, ‘∀′, ‘=⇒′, ‘ ∴
′, unless your

text is on formal logic; write ‘there exists’, ‘for all’, ‘implies’ and ‘therefore’
instead.

• Good definitions can increase the readability of your proof. However,
you should avoid to introduce you own terms if established terminology
is available. You might find it amusing to call an integer green if it is a
divisible by 2; however, your readers would prefer the term even integer.

• You can call your claims Theorem, Proposition, Lemma, Corollary, and
Scholium. They all have the form “If foo holds, then bar must hold”.
Recall that foo is said to be the hypothesis and bar the conclusion of your
claim. It is simply a matter of taste how you call your claims.

Generally, the term Theorem is used for important results, Proposition

for results that are perhaps not as important as theorems, and Lemma for
auxilliary results. A reader will pay more attention to theorems than to
lemmas.

A proposition or theorem can have a direct consequence that requires little
or no proof; such a claim is generally called a Corollary. If the Corollary
is extremely important, then you can elevate it to a Scholium, but this
term is not widely known, so you better use it rarely.

• Structure you proof! A proof that extends over several pages is hard to
follow, unless it is nicely structured. Sometimes it is better to proof a
theorem through a sequence of easy to understand lemmas, rather than
long winded statement.

You can also structure a long proof of a theorem by dividing it into smaller
(numbered) steps instead of a sequences of lemmas. This is advisable if
the lemmas would have awkward formulations.

1



Proof Techniques. The available proof techniques are quite limited. In a
direct proof, you assume the hypothesis and derive the conclusion is small steps
that use only the definitions, know facts, and logical rules. The next lemma is
an example of this proof technique.

Lemma 1. The sum of two even integers is an even integer.

Proof. Suppose that x and y are even integers, meaning that there are integers
x′ and y′ such that x = 2x′ and y = 2y′. It follows that

x + y = 2x′ + 2y′ = 2(x′ + y′)

is again an even number.

In a proof by contradiction, you suppose that the theorem was not true, and
the you derive a contradiction. It is generally a good idea to prepare the reader
that the proof will be by contradiction, for instance, by starting your proof with
the line “Seeking a contradiction, we assume”.

Lemma 2. There are infinitely many prime numbers.

Proof. Seeking a contradiction, we assume that there exist only a finite number
of primes, say p1, . . . , pn. However, the integer q = p1p2 · · · pn+1 is not divisible
by any of the primes pk for 1 ≤ k ≤ n. Therefore, q must be a prime number
that is not in our list of prime numbers and this contradicts our assumption.

Perhaps the most important proof technique for the analysis of algorithms
is to proof statements by mathematical induction. The basic principle is again
quite simple. Suppose that P (n) is a statement with a positive integer n as a
parameter. You have to show that the base case P (1) is true, and that the truth
of P (n) implies the truth of P (n + 1).

Theorem 1. If you make n straight cuts across a pizza, then you divide the

pizza into at most n(n + 1)/2 + 1 pieces.

Proof. We prove the statement by induction on the number of cuts. If we make a
single cut, then we divide the pizza into two pieces, which proves the case n = 1.
Suppose that the claim is true for n cuts, meaning that the pizza is cut into at
most n(n + 1)/2 + 1 pieces. The (n + 1)-th cut will create the largest possible
number of additional pieces if we cut through all previous n cutting lines and
avoid intersection points of previous cutting lines. Our new cut will create an
additional piece when it crosses the first line, another one when it crosses the
second line, etc., until it crosses the nth line, creating n + 1 additional pieces in
total. Thus, after making cut number n + 1, we have at most

n(n + 1)/2 + 1 + n + 1 =
n2 + n + 2n + 2

2
+ 1 =

(n + 1)(n + 2)

2
+ 1

pieces of pizza, as desired.

2


