Problem Set 1

CPSC 411 Analysis of Algorithms
Andreas Klappenecker
The assignment is due next Monday, Feb 2, 2009, before class.
The limit and limit superior criteria give in Lecture 2 for determining whether $f(n)=O(g(n))$ can be convenient in some of the subsequent exercises.

Exercise 1. Suppose that $p(n)=a_{0}+a_{1} n+\cdots+a_{m} n^{m}$ is a polynomial of degree m with complex coefficients. Show that $p(n)=O\left(n^{k}\right)$ for all $k \geq m$, and $p(n) \neq O\left(n^{\ell}\right)$ for $0 \leq \ell<m$.

Exercise 2. Show that for fixed k, we have

$$
\binom{n}{k}=\frac{n^{k}}{k!}+O\left(n^{k-1}\right) \quad \text { and } \quad\binom{n+k}{k}=\frac{n^{k}}{k!}+O\left(n^{k-1}\right)
$$

where $\binom{n}{k}=n(n-1)(n-2) \cdots(n-k+1) / k$! is the binomial coefficient.
Exercise 3. Show that $n /(n+1)=1+O(1 / n)$.
Exercise 4. Prove or disprove: $e^{n}=O\left(2^{n}\right)$.
Remark. Let n_{0} and n_{1} be positive integers with $n_{1}>n_{0}$. If $L\left(n_{0}\right) \geq$ $R\left(n_{0}\right)$ holds, and the numbers $L(n), R(n), L(n+1)$, and $R(n+1)$ are positive and

$$
\frac{L(n+1)}{L(n)} \geq \frac{R(n+1)}{R(n)}
$$

holds for all n in the range $n_{0} \leq n<n_{1}$, then it follows that $L(n) \geq R(n)$ holds for all n in the range $n_{0} \leq n \leq n_{1}$.

Exercise 5. (a) Prove by induction on k that

$$
\left(1+\frac{1}{n}\right)^{k}<1+\frac{k}{n}+\frac{k^{2}}{n^{2}}
$$

holds for all k in $\{1,2 \ldots, n\}$.
(b) Prove by induction that $n!\geq(n / 3)^{n}$ holds for all $n \geq 1$.
[Hint: Use part (a) of this exercise and the above remark].
(c) Deduce that $\log (n!)=\Omega(n \log n)$ holds.

Exercise 6 (CLRS). Exercise 2.3-3, page 36

