Problem Set 1 CPSC 411 Analysis of Algorithms Andreas Klappenecker

The assignment is due next Monday, Feb 2, 2009, before class.

The limit and limit superior criteria give in Lecture 2 for determining whether f(n) = O(g(n)) can be convenient in some of the subsequent exercises.

Exercise 1. Suppose that $p(n) = a_0 + a_1n + \cdots + a_mn^m$ is a polynomial of degree m with complex coefficients. Show that $p(n) = O(n^k)$ for all $k \ge m$, and $p(n) \ne O(n^\ell)$ for $0 \le \ell < m$.

Exercise 2. Show that for fixed k, we have

$$\binom{n}{k} = \frac{n^k}{k!} + O(n^{k-1})$$
 and $\binom{n+k}{k} = \frac{n^k}{k!} + O(n^{k-1}),$

where $\binom{n}{k} = n(n-1)(n-2)\cdots(n-k+1)/k!$ is the binomial coefficient.

Exercise 3. Show that n/(n+1) = 1 + O(1/n).

Exercise 4. Prove or disprove: $e^n = O(2^n)$.

Remark. Let n_0 and n_1 be positive integers with $n_1 > n_0$. If $L(n_0) \ge R(n_0)$ holds, and the numbers L(n), R(n), L(n+1), and R(n+1) are positive and

$$\frac{L(n+1)}{L(n)} \ge \frac{R(n+1)}{R(n)}$$

holds for all n in the range $n_0 \leq n < n_1$, then it follows that $L(n) \geq R(n)$ holds for all n in the range $n_0 \leq n \leq n_1$.

Exercise 5. (a) Prove by induction on k that

$$\left(1+\frac{1}{n}\right)^k < 1+\frac{k}{n}+\frac{k^2}{n^2}$$

holds for all k *in* $\{1, 2..., n\}$ *.*

(b) Prove by induction that $n! \ge (n/3)^n$ holds for all $n \ge 1$. [Hint: Use part (a) of this exercise and the above remark]. (c) Deduce that $\log(n!) = \Omega(n \log n)$ holds.

Exercise 6 (CLRS). Exercise 2.3-3, page 36