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We will discuss in this lecture the basic principles of the RSA public-key cryp-
tosystem, a system that is used in countless e-commerce applications. The
RSA public-key cryptosystem nicely illustrates basic number-theoretic princi-
ples. Furthermore, the basic algorithm used in RSA will motivate us to study
several other fundamental number-theoretic algorithms.

Suppose that Alice seeks a way that people can send her confidential mes-
sages by e-mail. The RSA cryptosystem allows her to publish a key that ev-
eryone can use to send her an encrypted message, but that is hard to decipher
without a secret that is only known to her.

We need some notation before stating the protocol. Euler’s totient func-
tion ϕ : N → N is defined as

ϕ(n) = n
∏

p|n

(
1− 1

p

)
,

where the product ranges over all primes dividing n. If n = pq is the product
of two distinct primes p and q, then ϕ(n) = (p− 1)(q − 1).

Key Generation:

• Alice selects two distinct large prime numbers p and q, and computes their
product n = pq.

• She selects an odd integer e > 0 such that gcd(e, ϕ(n)) = 1, and computes
positive integers d and k such that ed− kϕ(n) = 1.

• Alice publishes the pair P = (e, n), her public key. She carefully guards
as a secret the factorization of n, the product ϕ(n) = (p− 1)(q − 1)x, the
integer k, and her secret key S = (d, n).

Encryption and Decryption:

• For simplicity, we assume that a message is encoded as an integer M in
the range 2 ≤ M < n.

• If Bob wants to send a message M to Alice then he looks up Alice’s public
key and sends her the number

C ≡ Me (mod n).

• Alice uses her secret key to compute

Cd ≡ Med (mod n).

It turns out that Med ≡ M (mod n), so she recovers Bob’s message.

1



Fermat’s Little Theorem. We need to prove one interesting fact about in-
tegers modulo a prime p that is enormously useful. The theorem was stated by
Fermat and later formally proved by Euler.

Theorem 1 (Fermat). Let p be a prime. If a is an integer, then

ap ≡ a (mod p).

Proof. The assertion holds for a = 0 and a = 1. Assuming that the assertion is
true for a, then, by induction, (a + 1)p ≡ ap + 1 ≡ a + 1 (mod p). Therefore,
the assertion holds for every natural number. If p = 2, then the assertion holds
for all integers. If p is odd and ap ≡ a (mod p) holds, then (−a)p ≡ −ap ≡ −a
(mod p). Therefore, the theorem holds for all integers.

Corollary 2. Let p be a prime. If a is an integer that is not divisible by p, then

ap−1 ≡ 1 (mod p).

Proof. The hypothesis implies that gcd(a, p) = 1; hence, there exist integers x
and y such that ax+py = 1. Therefore, ax ≡ 1 (mod p). It follows from ap ≡ a
(mod p) that ap−1 ≡ xap ≡ xa ≡ 1 (mod p) holds.

The Chinese Remainder Theorem. The second ingredient that we need in
our correctness proof of the RSA protocol is a statement about the simultaneous
solvability of congruences.

Theorem 3 (Chinese Remainder Theorem). Let q and p be positive integers
such that gcd(q, p) = 1. For given integers x and y there exists an integer a
such that

a≡x (mod p),
a≡ y (mod q).

If a′ satisfies a′ ≡ x mod p and a′ ≡ y (mod q), then a ≡ a′ (mod pq).

Proof. Since gcd(p, q) = 1, there exist integers p′ and q′ such that

gcd(q, p) = 1 = pp′ + qq′.

In particular, we have qq′ ≡ 1 (mod p) and pp′ ≡ 1 (mod q). Therefore, the
integer a = ypp′ + xqq′ satisfies

a ≡ xqq′ ≡ x (mod p) and a ≡ ypp′ ≡ y (mod q).

Since a ≡ a′ (mod p), we have a − a′ = kp for some integer k. However,
a − a′ is divisible by q as well, hence kp is divisible by q. As gcd(p, q) = 1,
it follows that q must divide k. Therefore, a − a′ is divisible by pq, so a ≡ a′

(mod pq), as claimed.
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Correctness of RSA. The correctness of the RSA algorithm follows from
the following theorem.

Theorem 4. Let n = pq be a product of two distinct primes p and q. Let e, d,
and k be positive integers satisfying ed = 1 + kϕ(n). Then

Med ≡ M (mod n)

holds for all integers M .

Proof. It suffices to show that the two congruences

Med ≡ M (mod p) and Med ≡ M (mod q)

hold. Indeed, p and q are distinct primes, so gcd(p, q) = 1, and the above
congruences imply Med ≡ M (mod n) by the Chinese Remainder Theorem.

If M ≡ 0 (mod p), then certainly Med ≡ M (mod p). If M 6≡ 0 (mod p),
then Mp−1 ≡ 1 (mod p) by Corollary 2; hence,

Med ≡ M1+kϕ(n) ≡ M(Mp−1)k(q−1) ≡ M 1k(q−1) ≡ M (mod p).

Therefore, Med ≡ M (mod p) holds for all integers M . Replacing p by q in the
previous argument shows that Med ≡ M (mod q) for all integers M .
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