The RSA Public-Key Cryptosystem Andreas Klappenecker CPSC 411

We will discuss in this lecture the basic principles of the RSA public-key cryptosystem, a system that is used in countless e-commerce applications. The RSA public-key cryptosystem nicely illustrates basic number-theoretic principles. Furthermore, the basic algorithm used in RSA will motivate us to study several other fundamental number-theoretic algorithms.

Suppose that Alice seeks a way that people can send her confidential messages by e-mail. The RSA cryptosystem allows her to publish a key that everyone can use to send her an encrypted message, but that is hard to decipher without a secret that is only known to her.

We need some notation before stating the protocol. Euler's **totient function** $\varphi \colon \mathbf{N} \to \mathbf{N}$ is defined as

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right),$$

where the product ranges over all primes dividing n. If n = pq is the product of two distinct primes p and q, then $\varphi(n) = (p-1)(q-1)$.

Key Generation:

- Alice selects two distinct large prime numbers p and q, and computes their product n = pq.
- She selects an odd integer e > 0 such that $gcd(e, \varphi(n)) = 1$, and computes positive integers d and k such that $ed k\varphi(n) = 1$.
- Alice publishes the pair P = (e, n), her public key. She carefully guards as a secret the factorization of n, the product $\varphi(n) = (p-1)(q-1)x$, the integer k, and her secret key S = (d, n).

Encryption and Decryption:

- For simplicity, we assume that a message is encoded as an integer M in the range $2 \le M < n$.
- If Bob wants to send a message M to Alice then he looks up Alice's public key and sends her the number

$$C \equiv M^e \pmod{n}.$$

• Alice uses her secret key to compute

$$C^d \equiv M^{ed} \pmod{n}.$$

It turns out that $M^{ed} \equiv M \pmod{n}$, so she recovers Bob's message.

Fermat's Little Theorem. We need to prove one interesting fact about integers modulo a prime p that is enormously useful. The theorem was stated by Fermat and later formally proved by Euler.

Theorem 1 (Fermat). Let p be a prime. If a is an integer, then

$$a^p \equiv a \pmod{p}$$
.

Proof. The assertion holds for a = 0 and a = 1. Assuming that the assertion is true for a, then, by induction, $(a + 1)^p \equiv a^p + 1 \equiv a + 1 \pmod{p}$. Therefore, the assertion holds for every natural number. If p = 2, then the assertion holds for all integers. If p is odd and $a^p \equiv a \pmod{p}$ holds, then $(-a)^p \equiv -a^p \equiv -a \pmod{p}$. (mod p). Therefore, the theorem holds for all integers.

Corollary 2. Let p be a prime. If a is an integer that is not divisible by p, then

 $a^{p-1} \equiv 1 \pmod{p}.$

Proof. The hypothesis implies that gcd(a, p) = 1; hence, there exist integers x and y such that ax + py = 1. Therefore, $ax \equiv 1 \pmod{p}$. It follows from $a^p \equiv a \pmod{p}$ that $a^{p-1} \equiv xa^p \equiv xa \equiv 1 \pmod{p}$ holds.

The Chinese Remainder Theorem. The second ingredient that we need in our correctness proof of the RSA protocol is a statement about the simultaneous solvability of congruences.

Theorem 3 (Chinese Remainder Theorem). Let q and p be positive integers such that gcd(q, p) = 1. For given integers x and y there exists an integer a such that

$$a \equiv x \pmod{p}, \\ a \equiv y \pmod{q}.$$

If a' satisfies $a' \equiv x \mod p$ and $a' \equiv y \pmod{q}$, then $a \equiv a' \pmod{pq}$.

Proof. Since gcd(p,q) = 1, there exist integers p' and q' such that

$$gcd(q, p) = 1 = pp' + qq'.$$

In particular, we have $qq' \equiv 1 \pmod{p}$ and $pp' \equiv 1 \pmod{q}$. Therefore, the integer a = ypp' + xqq' satisfies

$$a \equiv xqq' \equiv x \pmod{p}$$
 and $a \equiv ypp' \equiv y \pmod{q}$.

Since $a \equiv a' \pmod{p}$, we have a - a' = kp for some integer k. However, a - a' is divisible by q as well, hence kp is divisible by q. As gcd(p,q) = 1, it follows that q must divide k. Therefore, a - a' is divisible by pq, so $a \equiv a' \pmod{pq}$, as claimed.

Correctness of RSA. The correctness of the RSA algorithm follows from the following theorem.

Theorem 4. Let n = pq be a product of two distinct primes p and q. Let e, d, and k be positive integers satisfying $ed = 1 + k\varphi(n)$. Then

$$M^{ed} \equiv M \pmod{n}$$

holds for all integers M.

Proof. It suffices to show that the two congruences

$$M^{ed} \equiv M \pmod{p}$$
 and $M^{ed} \equiv M \pmod{q}$

hold. Indeed, p and q are distinct primes, so gcd(p,q) = 1, and the above congruences imply $M^{ed} \equiv M \pmod{n}$ by the Chinese Remainder Theorem.

If $M \equiv 0 \pmod{p}$, then certainly $M^{ed} \equiv M \pmod{p}$. If $M \not\equiv 0 \pmod{p}$, then $M^{p-1} \equiv 1 \pmod{p}$ by Corollary 2; hence,

$$M^{ed} \equiv M^{1+k\varphi(n)} \equiv M(M^{p-1})^{k(q-1)} \equiv M \, 1^{k(q-1)} \equiv M \pmod{p}.$$

Therefore, $M^{ed} \equiv M \pmod{p}$ holds for all integers M. Replacing p by q in the previous argument shows that $M^{ed} \equiv M \pmod{q}$ for all integers M.