Counting

Andreas Klappenecker
Counting

k = 0;
for(int i=1; i<=m; i++) {
 for(int j=1; j<=n; j++) {
 k = k+1;
 }
}
// What is the value of k? Answer: k=mn
Product Rule

Suppose that a procedure can be broken down into a sequence of two tasks.

If there are m ways to do the first task and for each of these ways there are n ways to do the second task, then there are mn ways to do the procedure.
How many bit strings of length seven are there?

Answer: Each of the seven bits can be chosen in 2 ways. Therefore, there is a total of $2^7 = 128$ different bit strings of length 7 by the product rule.
Number of Functions

Suppose that $f: A \to B$ is a function from a set A with m elements to a set B with n elements.

How many such functions exist?

Answer: For each argument, we can choose one of the n elements of the codomain. Therefore, by the product rule, we have $n \times n \times \ldots \times n = n^m$ functions.
Recall that a function f is injective if and only if its function values $f(a)$ and $f(b)$ are different whenever the arguments a and b are different. Thus, all function values of an injective function are different.

How many injective functions are there from a set A with m elements to a set B with n elements?

<Try to figure it out before we answer it on the next slide>
Case $|A|>|B|$. There are no injective functions from A to B, as one cannot choose all function values to be different.

Case $|A|\leq|B|$. Suppose that $A = \{a_1, a_2, ..., a_m\}$ and $n=|B|$.

The value of a_1 can be chosen in n different ways.

The value of a_2 can be chosen in $n-1$ different ways, as the value $f(a_1)$ cannot be used again.

In general, after values of $\{a_1, ..., a_{k-1}\}$ have been chosen, the value of a_k can be chosen in just $n-(n-1) = n-k+1$ ways.

Thus, by the product rule there are $n(n-1)...(n-m+1)$ injective functions from A to B.
Suppose that S is a disjoint union of two finite sets A and B. Recall that $|S|$ denotes the size (cardinality) of the set.

The **sum rule** says that $|S| = |A| + |B|$.
Counting

\[k = 0; \]
\[\text{for(int } i=1; i<=m; i++) \]
\[\quad k = k+1; \]
\[\text{// First loop completed} \]
\[\text{for(int } j=1; j<=n; j++) \]
\[\quad k = k+1; \]
\[\text{// What is the value of } k? \quad k=m+n \]
Counting Principles

Counting is based on simple rules such as the sum and product rules. By themselves, they are trivial. These rules are typically used in a combination.

The hardest part is to figure out a good strategy to count elements.
Example

Each user on a computer system has a password which is 6-8 characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

Let P be the number of passwords, P_k the number of passwords of length k. Hence, $P = P_6 + P_7 + P_8$.

Now, $P_k = 36^k - 26^k$

= number of strings of length k with digits or uppercase letters - number of strings that just contain letters.

Hence, $P = P_6 + P_7 + P_8 = 36^6 - 26^6 + 36^7 - 26^7 + 36^8 - 26^8$
Inclusion-Exclusion Formula

Let A and B be finite sets.

$$|A \cup B| = |A| + |B| - |A \cap B|$$
How many bit strings of length 8 either start with 1 or end with 00?

Let A be the set of bit strings of length 8 that start with 1.

Then $|A| = 2^7$.

Let B be the set of bit strings of length 8 that end with 00.

Then $|B| = 2^6$.

The $|A \cap B| = |\text{bit strings of length 8 starting with 1 and ending with 00}| = 2^5$.

Therefore, $|A \cup B| = |A| + |B| - |A \cap B| = 2^7 + 2^6 - 2^5$
Pigeonhole Principle

If k is a positive integer and $k+1$ or more objects are placed into k boxes, then there is at least one box containing two or more objects.
Pigeonhole Principle: Example 1

Among any 367 people, there must be at least two with the same birthday.

[There are at most 366 possible birthdays]
Pigeonhole Principle: Example 2

For every positive integer n there is a multiple of n containing only 0s and 1s in its decimal expansion.

Proof: Consider the $n+1$ integers

$1, 11, ..., 11...1$ (with $n+1$ ones)

There are n possible remainders when these integers are divided by n, so two must have the same remainder.

The larger minus the smaller of the two numbers is a multiple of n, which has a decimal expansion consisting entirely of 0s and 1s.
Among any N positive integers, there exists 2 whose difference is divisible by N-1.

Proof: Let $a_1, a_2, ..., a_N$ be the numbers. For each a_i, let r_i be the remainder that results from dividing a_i by $N - 1$. (So $r_i = a_i \mod (N-1)$ and r_i can take on only the values 0, 1, ..., N-2.) There are N-1 possible values for each r_i, but there are N r_i's. Thus, by the pigeon hole principle, there must be two of the r_i's that are the same, $r_j = r_k$ for some pair j and k. But then, the corresponding a_i's have the same remainder when divided by N-1, and so their difference $a_j - a_k$ is evenly divisible by N-1.
Let $S = (a_1, \ldots, a_m)$ be a sequence of numbers. A subsequence of S is obtained by deleting terms of the sequence S, but keeping the order among the elements.

Example: $(5, 4, 7, 1, 3, 2)$ contains subsequences $(5, 4, 3, 2)$ and $(5, 7)$

A sequence is called strictly decreasing if each term is smaller than the previous one.

A sequence is called strictly increasing if each term is larger than the previous one.
Every sequence of $n^2 + 1$ distinct real numbers contains a subsequence of length $n+1$ that is either strictly increasing or strictly decreasing.

[A proof by contradiction seems like a good choice. But how can we arrive at a contradiction?]
Sequences (3)

Seeking a contradiction, we assume that there exists a sequence $S= (a_1,...,a_{n^2-1})$ does not contain any strictly increasing (or decreasing) subsequence of length $n+1$ or longer.

Associate with each term a_k of the sequence two integers:

$i_k = \text{length of the longest increasing subsequence starting at } a_k$

$d_k = \text{length of the longest decreasing subsequence starting at } a_k$

Notice that $1 \leq i_k, d_k \leq n$, so there are n^2 distinct ordered pairs (i_k, d_k) but the sequence contains n^2+1 elements, so there must be two terms of a_s and a_t of the sequence that contain the same pairs. We will show that this is impossible.
Since all elements of the sequence are distinct real numbers, we either have $a_s < a_t$ or $a_s > a_t$.

If $a_s < a_t$ then a strictly increasing subsequence of length i_s+1 can be formed by taking a_s followed by the strictly increasing subsequence of S starting at a_t, contradicting the fact that i_s denote the length of the longest strictly increasing subsequence starting at a_s.

Similarly, if $a_s > a_t$ then a strictly decreasing subsequence of length i_s+1 starting at a_s can be formed, contradicting the definition of i_s. Therefore, such a sequence S cannot exist.