Undecidability

Andreas Klappenecker

[based on slides by Prof. Welch]
Understanding Limits of Computing

• So far, we have studied how efficiently various problems can be solved.
• There has been no question as to whether it is possible to solve the problem.
• If we want to explore the boundary between what can and what cannot be computed.
Church-Turing Thesis

• Conjecture: Anything we reasonably think of as an algorithm can be computed by a Turing Machine (specific formal model).

• So we might as well think in our favorite programming language, or in pseudocode.

• Frees us from the tedium of having to provide boring details
 • in principle, pseudocode descriptions can be converted into some appropriate formal model.
Short Review of some Basic Set Theory Concepts
Some Notation

If A and B are sets, then the set of all functions from A to B is denoted by B^A.

If A is a set, then $P(A)$ denotes the power set, i.e., $P(A)$ is the set of all subsets of A.
Cardinality

Two sets A and B are said to have the same cardinality if and only if there exists a bijective function from A onto B.

[A function is bijective if it is one-to-one and onto]

We write $|A| = |B|$ if A and B have the same cardinality.

[Note that $|A| = |B|$ says that A and B have the same number of elements, even if we do not yet know about numbers!]
Set theorists count

• $0 = \{}$ // the empty set exists by axiom
 This set contains no elements
• $1 = \{0\} = \{{}\}$ // form the set containing {}
 This set contains one element
• $2 = \{0,1\} = \{\{},\{{}\}\}$
 This set contains two elements
• Keep including all previously created sets as elements of the next set.
Example

Theorem: \(|P(X)| = |2^X|\)

Proof: The bijection from \(P(X)\) onto \(2^X\) is given by the characteristic function. \(q.e.d.\)

Example: \(X = \{a, b\}\)

\(\emptyset\) corresponds to \(f(a)=0, f(b)=0\)

\(\{a\}\) corresponds to \(f(a)=1, f(b)=0\)

\(\{b\}\) corresponds to \(f(a)=0, f(b)=1\)

\(\{a, b\}\) corresponds to \(f(a)=1, f(b)=1\)
More About Cardinality

Let A and B be sets.

We write $|A| \leq |B|$ if and only if there exists an injective function from A to B.

We write $|A| < |B|$ if and only if there exist an injective function from A to B, but no bijection exists from A to B.
Cardinality

Cantor’s Theorem: Let S be any set. Then $|S| < |P(S)|$.

Proof: Since the function i from S to $P(S)$ given by $i(s) = \{s\}$ is injective, we have $|S| \leq |P(S)|$.

Claim: There does not exist any function f from S to $P(S)$ that is surjective.

Indeed, $T = \{ s \in S : s \notin f(s) \}$ is not contained in $f(S)$.

An element s in S is either contained in T or not.

- If $s \in T$, then $s \notin f(s)$ by definition of T. Thus, $T \neq f(s)$.
- If $s \notin T$, then $s \in f(s)$ by definition of T. Thus, $T \neq f(s)$.

Therefore, f is not surjective. This proves the claim.
Uncountable Sets and Uncomputable Functions
Countable Sets

Let \mathbb{N} be the set of natural numbers.

A set X is called \textit{countable} if and only if there exists a surjective function from \mathbb{N} onto X.

Thus, finite sets are countable, \mathbb{N} is countable, but the set of real numbers is not countable.
An Uncountable Set

Theorem: The set $\mathbb{N}^\mathbb{N} = \{ f \mid f: \mathbb{N} \rightarrow \mathbb{N} \}$ is not countable.

Proof: We have $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$ by Cantor’s theorem. Since $|\mathcal{P}(\mathbb{N})| = |2^\mathbb{N}|$ and $2^\mathbb{N}$ is a subset of $\mathbb{N}^\mathbb{N}$ we can conclude that

$|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| = |2^\mathbb{N}| \leq |\mathbb{N}^\mathbb{N}|$. q.e.d.
Alternate Proof:
The Set $\mathbb{N}^\mathbb{N}$ is Uncountable

Seeking a contradiction, we assume that the set of functions from \mathbb{N} to \mathbb{N} is countable. Let the functions in the set be f_0, f_1, f_2, \ldots

We will obtain our contradiction by defining a function f^d (using "diagonalization") that should be in the set but is not equal to any of the f_i's.
Diagonalization

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>4</td>
<td>14</td>
<td>34</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>f_1</td>
<td>55</td>
<td>32</td>
<td>777</td>
<td>3</td>
<td>21</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>f_2</td>
<td>90</td>
<td>2</td>
<td>5</td>
<td>21</td>
<td>66</td>
<td>901</td>
<td>2</td>
</tr>
<tr>
<td>f_3</td>
<td>4</td>
<td>44</td>
<td>7</td>
<td>8</td>
<td>34</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>f_4</td>
<td>80</td>
<td>56</td>
<td>32</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>f_5</td>
<td>43</td>
<td>345</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f_6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>
Diagonalization

- Define the function: \(f^d(n) = f_n(n) + 1 \)
- In the example:
 - \(f^d(0) = 4 + 1 = 5 \), so \(f^d \neq f_0 \)
 - \(f^d(1) = 32 + 1 = 33 \), so \(f^d \neq f_1 \)
 - \(f^d(2) = 5 + 1 = 6 \), so \(f^d \neq f_2 \)
 - \(f^d(3) = 7 + 1 = 8 \), so \(f^d \neq f_3 \)
 - \(f^d(4) = 3 + 1 = 4 \), so \(f^d \neq f_4 \)
 - etc.
Uncomputable Functions Exist!

Consider all programs (e.g. in the Turing machine model) that compute functions in $\mathbb{N}^\mathbb{N}$. The set $\mathbb{N}^\mathbb{N}$ is uncountable, hence cannot be enumerated.

However, the set of all programs can be enumerated (i.e., is countable).

Thus there must exist some functions in $\mathbb{N}^\mathbb{N}$ that cannot be computed by a program.
Set of All Programs is Countable

- Fix your computational model (e.g., Turing machines).
- Every program is finite in length.
- For every integer n, there is a finite number of programs of length n.
- Enumerate programs of length 1, then programs of length 2, then programs of length 3, etc.
Uncomputable Functions

- Previous proof just showed there must exist uncomputable functions
- Did not exhibit any particular uncomputable function
- Maybe the functions that are uncomputable are uninteresting...
- But actually there are some VERY interesting functions (problems) that are uncomputable
The Halting Problem
The Function Halt

• Consider this function, called Halt:
 • input: code for a program P and an input X for P
 • output: 1 if P terminates (halts) when executed on input X, and 0 if P doesn't terminate (goes into an infinite loop) when executed on input X

• By the way, a compiler is a program that takes as input the code for another program

• Note that the input X to P could be (the code for) P itself
 • in the compiler example, a compiler can be run on its own code
The Function Halt

- We can view Halt as a function from \(\mathbb{N} \) to \(\mathbb{N} \):
 - \(P \) and \(X \) can be represented in ASCII, which is a string of bits.
 - This string of bits can also be interpreted as a natural number.
- The function Halt would be a useful diagnostic tool in debugging programs.
Halt is Uncomputable

- Suppose in contradiction there is a program P_{halt} that computes Halt.
- Use P_{halt} as a subroutine in another program, P_{self}.
- Description of P_{self}:
 - input: code for any program P
 - constructs pair (P, P) and calls P_{halt} on (P, P)
 - returns same answer as P_{halt}
If P halts on input P, then $P_{\text{self}}(P, P) = 0$.

If P doesn't halt on input P, then $P_{\text{self}}(P, P) = 1$.

P_{halts} receives (P, P) as input and outputs 0 if P halts on input P, and 1 if P doesn't halt on input P.

P_{self} takes in P and outputs (P, P).

P_{self} takes in (P, P) and checks if P halts on input P. If P halts, it outputs 0; if P doesn't halt, it outputs 1.
Halt is Uncomputable

- Now use P_{self} as a subroutine inside another program P_{diag}.
- Description of P_{diag}:
 - input: code for any program P
 - call P_{self} on input P
 - if P_{self} returns 1 then go into an infinite loop
 - if P_{self} returns 0 then output 0
- P_{diag} on input P does the opposite of what program P does on input P.
28

P_{\text{diag}}

0 if P doesn't halt on input P

1 if P halts on input P

P \rightarrow P_{\text{diag}} \rightarrow P_{\text{self}} \rightarrow P_{\text{halt}} \rightarrow 0
Halt is Uncomputable

• Review behavior of P_{diag} on input P:
 • If P halts when executed on input P, then P_{diag} goes into an infinite loop
 • If P does not halt when executed on input P, then P_{diag} halts (and outputs 0)

• What happens if P_{diag} is given its own code as input?
 It either halts or doesn’t.
 • If P_{diag} halts when executed on input P_{diag}, then P_{diag} goes into an infinite loop
 • If P_{diag} doesn’t halt when executed on input P_{diag}, then P_{diag} halts

Contradiction
Halt is Uncomputable

• What went wrong?
• Our assumption that there is an algorithm to compute Halt was incorrect.
• So there is no algorithm that can correctly determine if an arbitrary program halts on an arbitrary input.
Undecidability
Undecidability

• The analog of an uncomputable function is an **undecidable set**.
• The theory of what can and cannot be computed focuses on identifying sets of strings:
 • an algorithm is required to "decide" if a given input string is in the set of interest
 • similar to deciding if the input to some NP-complete problem is a YES or NO instance
Undecidability

• Recall that a (formal) language is a set of strings, assuming some encoding.
• Analogous to the function Halt is the set H of all strings that encode a program P and an input X such that P halts when executed on X.
• There is no algorithm that can correctly identify for every string whether it belongs to H or not.
Many-One Reduction

\[\text{all strings over } L_1 \text{'s alphabet} \rightarrow \text{all strings over } L_2 \text{'s alphabet} \]

\[L_1 \rightarrow f \rightarrow L_2 \]
Many-One Reduction

- YES instances map to YES instances
- NO instances map to NO instances
- computable (doesn't matter how slow)
- Notation: $L_1 \leq_m L_2$
- Think: L_2 is at least as hard to compute as L_1
Many-One Reduction Theorem

Theorem: If $L_1 \leq_m L_2$ and L_2 is computable, then L_1 is computable.

Proof: Let f be the many-one reduction from L_1 to L_2. Let A_2 be an algorithm for L_2. Here is an algorithm A_1 for L_1.

- **input:** x
- **compute** $f(x)$
- **run** A_2 on input $f(x)$
Implication

- If there is no algorithm for L_1, then there is no algorithm for L_2.
- In other words, if L_1 is undecidable, then L_2 is also undecidable.
- Pay attention to the direction!
Example of a Reduction

- Consider the language L_{NE} consisting of all strings that encode a program that halts (does not go into an infinite loop) on at least one input.
- Use a reduction to show that L_{NE} is not decidable:
 - Show some known undecidable language $\leq_m L_{NE}$.
 - Our only choice for the known undecidable language is H (the language corresponding to the halting problem)
 - So show $H \leq_m L_{NE}$.
Example of a Reduction

• Given an arbitrary H input (encoding of a program P and an input X for P), compute an L_{NE} input (encoding of a program P')
 • such that P halts on input X if and only if P' halts on at least one input.

• Construction consists of writing code to describe P'.

• What should P' do? It's allowed to use P and X
Example of a Reduction

• The code for P' does this:
 • input X':
 • ignore X'
 • call program P on input X
 • if P halts on input X then return whatever P returns

• How does P' behave?
 • If P halts on X, then P' halts on every input
 • If P does not halt on X, then P' does not halt on any input
Example of a Reduction

- Thus if \((P,X)\) is a YES input for \(H\) (meaning \(P\) halts on input \(X\)), then \(P'\) is a YES input for \(L_{\text{NE}}\) (meaning \(P'\) halts on at least one input).
- Similarly, if \((P,X)\) is NO input for \(H\) (meaning \(P\) does not halt on input \(X\)), then \(P'\) is a NO input for \(L_{\text{NE}}\) (meaning \(P'\) does not halt on even one input).
- Since \(H\) is undecidable, and we showed \(H \leq_m L_{\text{NE}}\),
 \(L_{\text{NE}}\) is also undecidable.
Generalizing Such Reductions

- There is a way to generalize the reduction we just did, to show that lots of other languages that describe properties of programs are also undecidable.

- Focus just on programs that accept languages (sets of strings):
 - I.e., programs that say YES or NO about their inputs
 - Ex: a compiler tells you YES or NO whether its input is syntactically correct
Properties About Programs

- Define a property about programs to be a set of strings that encode some programs.
 - The "property" corresponds to whatever it is that all the programs have in common
- Example:
 - Program terminates in 10 steps on input y
 - Program never goes into an infinite loop
 - Program accepts a finite number of strings
 - Program contains 15 variables
 - Program accepts 0 or more inputs
Functional Properties

- A property about programs is called **functional** if it just refers to the language accepted by the program and not about the specific code of the program
 - Program terminates in 10 steps on input y (n.f.)
 - Program never goes into an infinite loop (f.)
 - Program accepts a finite number of strings (f.)
 - Program contains 15 variables (n.f.)
 - Program accepts 0 or more inputs (f.)
Nontrivial Properties

• A functional property about programs is nontrivial if some programs have the property and some do not

• Example of nontrivial programs:
 • Program never goes into an infinite loop
 • Program accepts a finite number of strings

• Example of a trivial program:
 • Program accepts 0 or more inputs
Rice's Theorem

- Every nontrivial (functional) property about programs is undecidable.
- The proof is a generalization of the reduction shown earlier.
- Very powerful and useful theorem:
 - To show that some property is undecidable, only need to show that is nontrivial and functional, then appeal to Rice's Theorem
Applying Rice's Theorem

- Consider the property "program accepts a finite number of strings".
- This property is functional:
 - it is about the language accepted by the program and not the details of the code of the program
- This property is nontrivial:
 - Some programs accept a finite number of strings (for instance, the program that accepts no input)
 - some accept an infinite number (for instance, the program that accepts every input)
- By Rice’s theorem, the property is undecidable.
Implications of Undecidable Program Property

• It is not possible to design an algorithm (write a program) that can analyze any input program and decide whether the input program satisfies the property!
• Essentially all you can do is simulate the input program and see how it behaves
 • but this leaves you vulnerable to an infinite loop
• Thought question: Then how can compilers be correct?