CSCE 411
Design and Analysis of Algorithms

Andreas Klappenecker
Motivation
Motivation

In 2004, a mysterious billboard showed up
- in the Silicon Valley, CA
- in Cambridge, MA
- in Seattle, WA
- in Austin, TX

and perhaps a few other places. The question on the billboard quickly spread around the world through numerous blogs. The next slide shows the billboard.
Recall Euler’s Number e

$$
e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

$$\approx 2.718281828459045235\ldots$$
Billboard Question

So the billboard question essentially asked: Given that $e = 2.718281828459045235$

Is 2718281828 prime?
Is 7182818284 prime?

... The first affirmative answer gives the name of the website
Strategy

1. Compute the digits of e
2. $i := 0$
3. while true do {
4. Extract 10 digit number p at position i
5. return p if p is prime
6. $i := i+1$
7. }

What needs to be solved?

Essentially, two questions need to be solved:

• How can we create the digits of e?
• How can we test whether an integer is prime?
Computing the Digits of e

- First Approach: Use the fact that

$$\left(1 + \frac{1}{n}\right)^n \leq e < \left(1 + \frac{1}{n}\right)^{n+1}$$

- Drawback: Needs rational arithmetic with long rationals
- Too much coding unless a library is used.
Extracting Digits of e

We can extract the digits of e in base 10 by
\[
d[0] = \text{floor}(e); \quad \text{(equals 2)}
\]
\[
e1 = 10*(e-d[0]);
\]
\[
d[1] = \text{floor}(e1); \quad \text{(equals 7)}
\]
\[
e2 = 10*(e1-d[1]);
\]
\[
d[2] = \text{floor}(e2); \quad \text{(equals 1)}
\]

Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10.

Idea: Use a mixed-radix representation that leads to a more regular pattern of the digits.
Mixed Radix Representation

\[a_0 + \frac{1}{2} \left(a_1 + \frac{1}{3} \left(a_2 + \frac{1}{4} \left(a_3 + \frac{1}{5} \left(a_4 + \frac{1}{6} \left(\cdots \right) \right) \right) \right) \right) \]

The digits \(a_i \) are nonnegative integers.

The base of this representation is \((1/2, 1/3, 1/4, \ldots)\).

The representation is called regular if \(a_i \leq i \) for \(i \geq 1 \).

Number is written as \((a_0; a_1, a_2, a_3, \ldots)\)
Computing the Digits of e

- Second approach:
 \[
 e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1} \left(1 + \frac{1}{2} \left(1 + \frac{1}{3} \left(1 + \cdots \right) \right) \right)
 \]

- In mixed radix representation
 \[e = (2;1,1,1,1,\ldots)\]
 where the digit 2 is due to the fact that both $k=0$ and $k=1$ contribute to the integral part.
Mixed Radix Representations

- In mixed radix representation
 \[(a_0; a_1, a_2, a_3, \ldots)\]
 \(a_0\) is the integer part and \((0; a_1, a_2, a_3, \ldots)\) the fractional part.
- 10 times the number is \((10a_0; 10a_1, 10a_2, 10a_3, \ldots)\), but the representation is not regular anymore. The first few digits might exceed their bound. Remember that the ith digit is supposed to be i or less.
- Renormalize the representation to make it regular again
- The algorithm given for base 10 now becomes feasible; this is known as the spigot algorithm.
Spigot Algorithm

```c
#define N (1000) /* compute N-1 digits of e, by brainwagon@gmail.com */
main(i, j, q ) {
  int A[N];
  printf("2.");
  for ( j = 0; j < N; j++ )
    A[j] = 1; /* here the ith digit is represented by A[i-1], as the integral part is omitted */
  set all digits of nonintegral part to 1.
  for ( i = 0; i < N - 2; i++ ) {
    q = 0;
    for ( j = N - 1; j >= 0; ) {
      A[j] = 10 * A[j] + q; /* compute the amount that needs to be carried over to the next digit */
      q = A[j] / (j + 2); /* we divide by j+2, as regularity means here that A[j] <= j+1 */
      A[j] %= (j + 2); /* keep only the remainder so that the digit is regular */
      j--;
    }
    putchar(q + 48); /* put all digits */
  }
}
```

Revisiting the Question

For mathematicians, the previous algorithm is natural, but it might be a challenge for computer scientists and computer engineers to come up with such a solution.

Could we get away with a simpler approach?

After all, the billboard only asks for the first
Probability to be Prime

Let \(\pi(x) \)=\# of primes less than or equal to \(x \).

\[
\Pr[\text{number with } \leq 10 \text{ digits is prime }] \\
= \frac{\pi(99999 \ 99999)}{99999 \ 99999} \\
= 0.045 \text{ (roughly)}
\]

Thus, the probability that the first \(k \) 10-digits numbers in \(e \) are **not prime** is approximately \(0.955^k \).

This probability rapidly approaches 0 for \(k\to\infty \), so we need to compute just a few digits of \(e \) to
Google it!

Since we will likely need just few digits of Euler's number e, there is no need to reinvent the wheel.

We can simply
- google e or
- use the GNU bc calculator
to obtain a few hundred digits of e.
State of Affairs

We have provided two solutions to the question of generating the digits of e
• An elegant solution using the mixed-radix representation of e that led to the spigot algorithm
• A crafty solution that provides enough digits of e to solve the problem at hand.
How do we check Primality?

The second question concerning the testing of primality is simpler.

If a number \(x \) is not prime, then it has a divisor \(d \) in the range \(2 \leq d \leq \sqrt{x} \).

Trial divisions are fast enough here!

Simply check whether any number \(d \) in the
A Simple Script


```sh
#!/bin/sh

echo \"scale=1000; e(1) \" | bc -l | \
perl -0777 -ne ' \
  s/\[^0-9\]//g; \
  for ($i (0 .. length($$_-10)) \
  { \
    $j=substr($$_,$i,10); \
    $j +=0; \
    print "$i	$j\n" if is_p($j); 
  } \
  sub is_p { \
    my $n = shift; \
    return 0 if $n <= 1; \
    return 1 if $n <= 3; \
    for (2 .. sqrt($n)) { 
      return 0 unless $n % $_; 
  } \
  return 1; 
  } 
' \

```
What was it all about?

The billboard was an ad paid for by Google. The website
http://www.7427466391.com contained another challenge and then asked people to submit their resume.

Google’s obsession with e is well-known, since they pledged in their IPO filing to raise e billion dollars, rather than the usual round-number amount of money.