CSCE 411
 Design and Analysis of Algorithms

Andreas Klappenecker

Motivation

In 2004, a mysterious billboard showed up
in the Silicon Valley, CA
in Cambridge, MA
in Seattle, WA
in Austin, TX
and perhaps a few other places. The question on the billboard quickly spread around the world through numerous blogs. The next slide shows the billboard.

Recall Euler's Number e

$$
\begin{aligned}
e & =\sum_{k=0}^{\infty} \frac{1}{k!} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
\end{aligned}
$$

$\approx 2.718281828459045235 \ldots$

Billboard Question

So the billboard question essentially asked: Given that $e=$ 2.718281828459045235

Is 2718281828 prime?
Is 7182818284 prime?

The first affirmative answer gives the name of the website

Strategy

1. Compute the digits of e
2. $i:=0$
3. while true do \{
4. Extract 10 digit number p at position i
5. return p if p is prime
6. $i:=i+1$
7. \}

What needs to be solved?

Essentially, two questions need to be solved:
How can we create the digits of e?
How can we test whether an integer is prime?

Computing the Digits of e

First Approach: Use the fact that
$\left(1+\frac{1}{n}\right)^{n} \leq e<\left(1+\frac{1}{n}\right)^{n+1}$

Drawback: Needs rational arithmetic with long rationals
Too much coding unless a library is used.

Extracting Digits of e

We can extract the digits of e in base 10
by
$\mathrm{d}[0]=$ floor (e); \quad (equals 2)
e1 = 10*(e-d[0]);
$d[1]=$ floor(e1);
(equals 7)
e2 = 10*(e1-d[1]);
$\mathrm{d}[2]=$ floor(e2); (equals 1)
Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10.

Idea: Use a mixed-radix representation that leads to a more regular pattern of the digits.

Mixed Radix Representation

$$
a_{0}+\frac{1}{2}\left(a_{1}+\frac{1}{3}\left(a_{2}+\frac{1}{4}\left(a_{3}+\frac{1}{5}\left(a_{4}+\frac{1}{6}\left(a_{5}+\cdots\right)\right)\right)\right)\right)
$$

The digits a_{i} are nonnegative integers.
The base of this representation is (1/2,1/3,1/4,...).

The representation is called regular if
$a_{i}<=i$ for $i>=1$.
Number is written as ($a_{0} ; a_{1}, a_{2}, a_{3}, \ldots$)

Computing the Digits of e

Second approach:
$e=\sum_{k=0}^{\infty} \frac{1}{k!}$
$=1+\frac{1}{1}\left(1+\frac{1}{2}\left(1+\frac{1}{3}(1+\cdots)\right)\right)$

In mixed radix representation

$$
e=(2 ; 1,1,1,1, \ldots)
$$

where the digit 2 is due to the fact that both $\mathrm{k}=0$ and $\mathrm{k}=1$ contribute to the integral part.

Mixed Radix Representations

In mixed radix representation

$$
\left(a_{0} ; a_{1}, a_{2}, a_{3}, \cdots\right)
$$

a_{0} is the integer part and $\left(0 ; a_{1}, a_{2}, a_{3}, \ldots\right)$ the fractional part.
10 times the number is $\left(10 a_{0}, 10 a_{1}, 10 a_{2}, 10 a_{3}, \ldots\right)$, but the representation is not regular anymore. The first few digits might exceed their bound. Remember that the ith digit is supposed to be i or less.

Renormalize the representation to make it regular again
The algorithm given for base 10 now becomes feasible; this is known as the spigot algorithm.

Spigot Algorithm

```
#define N (1000) /* compute N-1 digits of e, by brainwagon@gmail.com */
main(i,j, q){
    int A[N];
    printf("2.");
    for (j = 0; j < N; j++ )
        A[j] = 1;
        here the ith digit is represented by A[i-1], as the integral part is omitted
        set all digits of nonintegral part to 1.
    for (i=0;i<N - 2;i++ ){
        q=0;
        for( ( = N-1; j> 0; ){
            A[j] = 10 * A[j] + q;
            q=A[j]/ (j + 2); compute the amount that needs to be carried over to the next digit
                we divide by j+2, as regularity means here that A[j]<= j+1
            A[j] %=(j+2); keep only the remainder so that the digit is regular
            j--;
            }
            putchar(q+48)
}
}
```


Revisiting the Question

For mathematicians, the previous algorithm is natural, but it might be a challenge for computer scientists and computer engineers to come up with such a solution.

Could we get away with a simpler approach?

After all, the billboard only asks for the first

Probability to be Prime

Let pi(x)=\# of primes less than or equal to x.
Pr [number with <= 10 digits is prime]
= pi(99999 99999)/99999 99999
$=0.045$ (roughly)
Thus, the probability that the first k 10-digits numbers in e are not prime is approximately 0.955^{k}

This probability rapidly approaches 0 for $k->\infty$, so we need to compute just a few digits of e to

Google it!

Since we will likely need just few digits of Euler's number e, there is no need to reinvent the wheel.

We can simply
google e or
use the GNU bc calculator
to obtain a few hundred digits of e.

State of Affairs

We have provided two solutions to the question of generating the digits of e

- An elegant solution using the mixedradix representation of e that led to the spigot algorithm
- A crafty solution that provides enough digits of e to solve the problem at hand.

How do we check Primality?

The second question concerning the testing of primality is simpler.

If a number x is not prime, then it has a divisor d in the range $2<=d<=\operatorname{sqrt}(x)$.

Trial divisions are fast enough here!

Simply check whether any number d in the

A Simple Script

$h t t p: / / d i s c u s s . f o g c r e e k . c o m / j o e l o n s o f t w a r e / d e f a u l t . a s p ? c m d=s h o w \& i x P o s t=160966 \& i x$ Replies=23
\#!/bin/sh
echo "scale=1000; e(1)" | bc-1||
perl -0777-ne
s/[$\left.{ }^{0} 0-9\right] / / \mathrm{g}:$
for \$i (0..length(\$_)-10)
\{
\$j=substr(\$_,\$i,10);
$\$ j+=0$;
print "\$ilt\$j\n" if is_p(\$j):
3
sub is_p \{
my \$n= shift:
return 0 if $\$ n<=1$;
return 1 if $\$ n<=3$;
for ($2 . . \operatorname{sqrt}(\$ n)$) \{
return 0 unless $\$ n \% \$$
\}
return 1;

What was it all about?

The billboard was an ad paid for by Google. The website
http://www.7427466391.com
contained another challenge and then asked people to submit their resume.

Google's obsession with e is well-known, since they pledged in their IPO filing to raise e billion dollars, rather than the usual round-number amount of money.

