
1

Graph Algorithms

Andreas Klappenecker

[based on slides by Prof. Welch]

2

Directed Graphs

Let V be a finite set and E a binary
relation on V, that is, E⊆VxV. Then the
pair G=(V,E) is called a directed graph.

• The elements in V are called vertices.
• The elements in E are called edges.
• Self-loops are allowed, i.e., E may contain
(v,v).

3

Undirected Graphs

Let V be a finite set and E a subset of
{ e | e ⊆ V, |e|=2 }. Then the pair G=(V,E)
is called an undirected graph.

• The elements in V are called vertices.
• The elements in E are called edges, e={u,v}.

• Self-loops are not allowed, e≠{u,u}={u}.

4

Adjacency

By abuse of notation, we will write (u,v)
for an edge {u,v} in an undirected graph.

If (u,v) in E, then we say that the vertex
v is adjacent to the vertex u.

For undirected graphs, adjacency is a
symmetric relation.

5

Graph Representations

• Adjacency lists
• Adjacency matrix

6

Adjacency List Representation

a

c d

b

e
b ca

b

c

d

e

a d e

+ Space-efficient: just O(|V|) space for sparse graphs

- Testing adjacency is O(|V|) in the worst case

7

Adjacency Matrix

a

c d

b

e
a
b
c
d
e

a b c d e
0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

+ Can check adjacency in constant time

- Needs Ω(|V|2) space

8

Graph Traversals

Ways to traverse or search a graph such
that every node is visited exactly once

9

Breadth-First Search

10

Breadth First Search (BFS)
Input: A graph G = (V,E) and source node s in V
for each node v do

mark v as unvisited
od
mark s as visited
enq(Q,s) // first-in first-out queue Q

while Q is not empty do
u := deq(Q)
for each unvisited neighbor v of u do

mark v as visited; enq(Q,v);
od

od

11

BFS Example

Visit the nodes in the
order:
s
a, d
b, c
Workout the evolution
of the state of queue.

a

c

d

b

s

12

BFS Tree

• We can make a spanning tree rooted at
s by remembering the "parent" of each
node

13

Breadth First Search #2

• Input: G = (V,E) and source s in V
• for each node v do

• mark v as unvisited
• parent[v] := nil

• mark s as visited
• parent[s] := s
• enq(Q,s) // FIFO queue Q

14

Breadth First Search #2

• while Q is not empty do
• u := deq(Q)
• for each unvisited neighbor v of u do

• mark v as visited
• parent[v] := u
• enq(Q,v)

15

BFS Tree Example

a

c

d

b

s

16

BFS Trees

• BFS tree is not necessarily unique for a
given graph

• Depends on the order in which
neighboring nodes are processed

17

BFS Numbering

• During the breadth-first search, assign
an integer to each node

• Indicate the distance of each node
from the source s

18

Breadth First Search #3

• Input: G = (V,E) and source s in V
• for each node v do

• mark v as unvisited
• parent[v] := nil
• d[v] := infinity

• mark s as visited
• parent[s] := s
• d[s] := 0
• enq(Q,s) // FIFO queue Q

19

Breadth First Search #3

• while Q is not empty do
• u := deq(Q)
• for each unvisited neighbor v of u do

• mark v as visited
• parent[v] := u
• d[v] := d[u] + 1
• enq(Q,v)

20

BFS Numbering Example

a

c

d

b

sd = 0

d = 1

d = 1

d = 2

d = 2

21

Shortest Path Tree

• Theorem: BFS algorithm
• visits all and only nodes reachable from s
• sets d[v] equal to the shortest path

distance from s to v, for all nodes v, and
• sets parent variables to form a shortest

path tree

22

Proof Ideas

• Use induction on distance from s to show
that the d-values are set properly.

• Basis: distance 0. d[s] is set to 0.
• Induction: Assume true for all nodes at

distance x-1 and show for every node v at
distance x.

• Since v is at distance x, it has at least one
neighbor at distance x-1. Let u be the first
of these neighbors that is enqueued.

23

Proof Ideas

u

c

d

vs
dist=x-1

dist=x

dist=x-1

dist=x+1

Key property of shortest path distances:
If v has distance x,
• it must have a neighbor with distance x-1,
• no neighbor has distance less than x-1, and
• no neighbor has distance more than x+1

24

Proof Ideas

• Fact: When u is dequeued, v is still
unvisited.
• because of how queue operates and since d

never underestimates the distance

• By induction, d[u] = x-1.
• When v is enqueued, d[v] is set to
 d[u] + 1= x

25

BFS Running Time

• Initialization of each node takes O(V) time
• Every node is enqueued once and dequeued

once, taking O(V) time
• When a node is dequeued, all its neighbors

are checked to see if they are unvisited,
taking time proportional to number of
neighbors of the node, and summing to O(E)
over all iterations

• Total time is O(V+E)

26

Depth-First Search

27

Depth-First Search

Input: G = (V,E)

for each node u do

 mark u as unvisited

od;

for each unvisited node u

recursiveDFS(u):
 mark u as visited;
 for each unvisited neighbor v of u do
 recursiveDFS(v)
od

28

DFS Example

Example taken from http://atcp07.cs.brown.edu/courses/cs016/Resource/old_lectures/DFS.pdf

29

Example taken from http://atcp07.cs.brown.edu/courses/cs016/Resource/old_lectures/DFS.pdf

30

Disconnected Graphs

What if the graph is disconnected or is
directed?
We call DFS on several nodes to visit all nodes

• purpose of second for-loop in non-recursive
wrapper

a

cb

d

e

31

DFS Forest

By keeping track of parents, we want to
construct a forest resulting from the
DFS traversal.

32

Depth-First Search #2

• Input: G = (V,E)
• for each node u do

• mark u as unvisited
• parent[u] := nil

• for each unvisited
node u do
• parent[u] := u
 // a root

• call recursive DFS(u)

• recursiveDFS(u):
• mark u as visited
• for each unvisited

neighbor v of u do
• parent[v] := u
• call recursiveDFS(v)

33

Further Properties of DFS

Let us keep track of some interesting
information for each node.

We will timestamp the steps and record the
• discovery time, when the recursive call starts
• finish time, when its recursive call ends

34

Depth-First Search #3

• Input: G = (V,E)
• for each node u do

• mark u as unvisited
• parent[u] := nil

• time := 0
• for each unvisited node

u do
• parent[u] := u // a root
• call recursive DFS(u)

• recursiveDFS(u):
• mark u as visited
• time++
• disc[u] := time
• for each unvisited

neighbor v of u do
• parent[v] := u
• call recursiveDFS(v)

• time++
• fin[u] := time

35

Running Time of DFS

• initialization takes O(V) time
• second for loop in non-recursive

wrapper considers each node, so O(V)
iterations

• one recursive call is made for each node
• in recursive call for node u, all its

neighbors are checked; total time in all
recursive calls is O(E)

36

Nested Intervals

• Let interval for node v be [disc[v],fin[v]].
• Fact: For any two nodes, either one interval

precedes the other or one is enclosed in the
other
 [Reason: recursive calls are nested.]

• Corollary: v is a descendant of u in the DFS
forest iff the interval of v is inside the
interval of u.

37

Classifying Edges

• Consider edge (u,v) in directed graph
 G = (V,E) w.r.t. DFS forest

• tree edge: v is a child of u
• back edge: v is an ancestor of u
• forward edge: v is a descendant of u

but not a child
• cross edge: none of the above

38

Example of Classifying Edges

a

c

b e

fd

in DFS forest

not in DFS
forest

tree

tree

tree

treeforward

back

back

cross

1/8

4/5

2/7

3/6 10/11

9/12

a/b disc./finish. time

tree edge: v child of u
back edge: v ancestor of u
forward edge: v descendant of u, but not child
cross edge: none of the above

39

DFS Application: Topological
Sort

• Given a directed acyclic graph (DAG), find a
linear ordering of the nodes such that if (u,v)
is an edge, then u precedes v.

• DAG indicates precedence among events:
• events are graph nodes, edge from u to v means

event u has precedence over event v

• Partial order because not all events have to
be done in a certain order

40

Precedence Example

• Tasks that have to be done to eat
breakfast:
• get glass, pour juice, get bowl, pour cereal,

pour milk, get spoon, eat.

• Certain events must happen in a certain
order (ex: get bowl before pouring milk)

• For other events, it doesn't matter (ex:
get bowl and get spoon)

41

Precedence Example

get glass

pour juice

get bowl

pour cereal

pour milk get spoon

eat breakfast

Order: glass, juice, bowl, cereal, milk, spoon, eat.

42

Why Acyclic?

• Why must a directed graph be acyclic
for the topological sort problem?

• Otherwise, no way to order events
linearly without violating a precedence
constraint.

43

Idea for Topological Sort Alg.

• What does DFS do on a DAG?

eat
juice
glass

milk
cereal

bowl

spoon

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

1 2 3 4 5 6 7 8 9 10 11 12 13 14

44

Topological Sort Algorithm

input: DAG G = (V,E)
1. call DFS on G to compute finish[v] for

all nodes v
2. when each node's recursive call

finishes, insert it on the front of a
linked list

3. return the linked list

45

Correctness of T.S. Algorithm

• Show that if (u,v) is an edge, then v finishes
before u.

Case 1: v is finished when u is discovered. Then
v finishes before u finishes.

Case 2: v is not yet discovered when u is
discovered.
 Claim: v will become a descendant of u and

thus v will finish before u finishes.
Case 3: v is discovered but not yet finished

46

Correctness of T.S. Algorithm

• v is discovered but not yet finished
when u is discovered.

• Then u is a descendant of v.
• But that would make (u,v) a back edge

and a DAG cannot have a back edge (the
back edge would form a cycle).

• Thus Case 3 is not possible.

47

DFS Application: Strongly
Connected Components

• Consider a directed graph.
• A strongly connected component (SCC)

of the graph is a maximal set of nodes
with a (directed) path between every
pair of nodes

• Problem: Find all the SCCs of the
graph.

48

What Are SCCs Good For?

• packaging software modules
• construct directed graph of which

modules call which other modules
• A SCC is a set of mutually interacting

modules
• pack together those in the same SCC

from http://www.cs.princeton.edu/courses/archive/fall07/cos226/
lectures.html

49

SCC Example

h f a e

g c b d

four SCCs

50

How Can DFS Help?

• Suppose we run DFS on the directed
graph.

• All nodes in the same SCC are in the
same DFS tree.

• But there might be several different
SCCs in the same DFS tree.
• Example: start DFS from node h in

previous graph

51

Main Idea of SCC Algorithm

• DFS tells us which nodes are reachable
from the roots of the individual trees

• Also need information in the "other
direction": is the root reachable from
its descendants?

• Run DFS again on the "transpose" graph
(reverse the directions of the edges)

52

SCC Algorithm

input: directed graph G = (V,E)
1. call DFS(G) to compute finishing times
2. compute GT // transpose graph
3. call DFS(GT), considering nodes in

decreasing order of finishing times
4. each tree from Step 3 is a separate

SCC of G

53

SCC Algorithm Example

h f a e

g c b d

input graph - run DFS

54

After Step 1

c
b g

f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d
e

h

fin
(c

)

fin
(d

)

fin
(b

)

fin
(e

)
fin

(a
)

fin
(h

)

fin
(g

)

fin
(f)

Order of nodes for Step 3: f, g, h, a, e, b, d, c

a

f reaches g reaches h; a reaches b, e; b reaches c,d

55

After Step 2

h f a e

g c b d

transposed input graph - run DFS with
specified order of nodes:
f can be reached from h, h can be reached
from g, ...

f, g, h, a, e, b, d, c

56

After Step 3

g
h e
f a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d

SCCs are {f,h,g} and {a,e} and {b,c} and {d}.

b
c

57

Running Time of SCC Algorithm

• Step 1: O(V+E) to run DFS
• Step 2: O(V+E) to construct transpose

graph, assuming adjacency list rep.
• Step 3: O(V+E) to run DFS again
• Step 4: O(V) to output result
• Total: O(V+E)

58

Correctness of SCC Algorithm

• Proof uses concept of component graph,
GSCC, of G.

• Nodes are the SCCs of G; call them C1,
C2, …, Ck

• Put an edge from Ci to Cj iff G has an
edge from a node in Ci to a node in Cj

59

Example of Component Graph

 {a,e}

{f,h,g} {d}

 {b,c}

 based on example graph from before

60

Facts About Component Graph

• Claim: GSCC is a directed acyclic graph.
• Why?
• Suppose there is a cycle in GSCC such

that component Ci is reachable from
component Cj and vice versa.

• Then Ci and Cj would not be separate
SCCs.

61

Facts About Component Graph

• Consider any component C during Step 1
(running DFS on G)

• Let d(C) be earliest discovery time of any
node in C

• Let f(C) be latest finishing time of any node
in C

• Lemma: If there is an edge in GSCC from
component C' to component C, then
 f(C') > f(C).

62

Proof of Lemma

• Case 1: d(C') < d(C).
• Suppose x is first node discovered in

C'.
• By the way DFS works, all nodes in C'

and C become descendants of x.
• Then x is last node in C' to finish and

finishes after all nodes in C.
• Thus f(C') > f(C).

C' C

63

Proof of Lemma

• Case 2: d(C') > d(C).
• Suppose y is first node discovered in C.
• By the way DFS works, all nodes in C become

descendants of y.
• Then y is last node in C to finish.
• Since C' → C, no node in C' is reachable from

y, so y finishes before any node in C' is
discovered.

C' C

64

SCC Algorithm is Correct

• Prove this theorem by induction on
number of trees found in Step 3 (calling
DFS on GT).

• Hypothesis is that the first k trees
found constitute k SCCs of G.

• Basis: k = 0. No work to do !

65

SCC Algorithm is Correct

• Induction: Assume the first k trees
constructed in Step 3 correspond to k SCCs,
and consider the (k+1)st tree.

• Let u be the root of the (k+1)st tree.
• u is part of some SCC, call it C.
• By the inductive hypothesis, C is not one of

the k SCCs already found and all nodes in C
are unvisited when u is discovered.
• By the way DFS works, all nodes in C become part

of u's tree

66

SCC Algorithm is Correct

• Show only nodes in C become part of u's
tree. Consider an outgoing edge from C.

w

z

u

C'

CGT:

w

z

u

C'

CG:

67

SCC Algorithm is Correct

• By lemma, in Step 1 the last
node in C' finishes after the
last node in C finishes.

• Thus in Step 3, some node in
C' is discovered before any
node in C is discovered.

• Thus all of C', including w, is
already visited before u's DFS
tree starts

w

z

u

C'

CG:

68

Conclusion

• The proof that the algorithm does indeed find the
strongly connected components is rather typical.

• The main ideas are quite simple:
• the DFS forest of G specifies which nodes can be

reached from their roots
• the DFS forest of Gt specifies from where the

root can be reached.
• You need to have a good grasp of the algorithm

before you can attempt to prove it correct. The
formalization of the proof can be difficult.

68

