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Graph Algorithms

Andreas Klappenecker

[based on slides by Prof. Welch]
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Directed Graphs

Let V be a finite set and E a binary 
relation on V, that is, E⊆VxV. Then the 
pair G=(V,E) is called a directed graph. 

• The elements in V are called vertices.
• The elements in E are called edges. 
• Self-loops are allowed, i.e., E may contain 
(v,v).  
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Undirected Graphs

Let V be a finite set and E a subset of 
{ e | e ⊆ V, |e|=2 }. Then the pair G=(V,E) 
is called an undirected graph. 

• The elements in V are called vertices.
• The elements in E are called edges, e={u,v}.  

• Self-loops are not allowed, e≠{u,u}={u}.   
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Adjacency

By abuse of notation, we will write (u,v) 
for an edge {u,v} in an undirected graph.

If (u,v) in E, then we say that the vertex 
v is adjacent to the vertex u. 

For undirected graphs, adjacency is a 
symmetric relation. 
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Graph Representations

• Adjacency lists
• Adjacency matrix
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Adjacency List Representation

a

c d

b

e
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d
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a d e

+ Space-efficient: just O(|V|) space for sparse graphs

- Testing adjacency is O(|V|) in the worst case
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Adjacency Matrix 

a

c d

b

e
a
b
c
d
e

a   b   c   d   e
0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 0 1 0

+ Can check adjacency in constant time

- Needs Ω(|V|2) space 
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Graph Traversals

Ways to traverse or search a graph such 
that every node is visited exactly once
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Breadth-First Search
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Breadth First Search (BFS)
Input:  A graph G = (V,E) and source node s in V
for each node v do

mark v as unvisited
od
mark s as visited
enq(Q,s)    // first-in first-out queue Q

while Q is not empty do
u := deq(Q)
for each unvisited neighbor v of u do

mark v as visited; enq(Q,v);
od

od
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BFS Example

Visit the nodes in the 
order: 
s
a, d
b, c
Workout the evolution 
of the state of queue.

a

c

d

b

s
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BFS Tree

• We can make a spanning tree rooted at 
s by remembering the "parent" of each 
node
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Breadth First Search #2

• Input:  G = (V,E) and source s in V
• for each node v do

• mark v as unvisited
• parent[v] := nil

• mark s as visited
• parent[s] := s
• enq(Q,s)  // FIFO queue Q
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Breadth First Search #2

• while Q is not empty do
• u := deq(Q)
• for each unvisited neighbor v of u do

• mark v as visited
• parent[v] := u
• enq(Q,v)
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BFS Tree Example
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BFS Trees

• BFS tree is not necessarily unique for a 
given graph

• Depends on the order in which 
neighboring nodes are processed
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BFS Numbering

• During the breadth-first search, assign 
an integer to each node

• Indicate the distance of each node 
from the source s
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Breadth First Search #3

• Input:  G = (V,E) and source s in V
• for each node v do

• mark v as unvisited
• parent[v] := nil
• d[v] := infinity

• mark s as visited
• parent[s] := s
• d[s] := 0
• enq(Q,s)  // FIFO queue Q
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Breadth First Search #3

• while Q is not empty do
• u := deq(Q)
• for each unvisited neighbor v of u do

• mark v as visited
• parent[v] := u
• d[v] := d[u] + 1
• enq(Q,v)
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BFS Numbering Example

a

c

d

b

sd = 0

d = 1

d = 1

d = 2

d = 2
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Shortest Path Tree

• Theorem:  BFS algorithm
• visits all and only nodes reachable from s
• sets d[v] equal to the shortest path 

distance from s to v, for all nodes v, and
• sets parent variables to form a shortest 

path tree
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Proof Ideas

• Use induction on distance from s to show 
that the d-values are set properly.

• Basis:  distance 0.  d[s] is set to 0.
• Induction:  Assume true for all nodes at 

distance x-1 and show for every node v at 
distance x.

• Since v is at distance x, it has at least one 
neighbor at distance x-1.  Let u be the first 
of these neighbors that is enqueued.
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Proof Ideas

u

c

d

vs
dist=x-1

dist=x

dist=x-1

dist=x+1

Key property of shortest path distances:  
If v has distance x,
• it must have a neighbor with distance x-1, 
• no neighbor has distance less than x-1, and 
• no neighbor has distance more than x+1
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Proof Ideas

• Fact:  When u is dequeued, v is still 
unvisited.
• because of how queue operates and since d 

never underestimates the distance

• By induction, d[u] = x-1.
• When v is enqueued, d[v] is set to 
  d[u] + 1= x



25

BFS Running Time

• Initialization of each node takes O(V) time
• Every node is enqueued once and dequeued 

once, taking O(V) time
• When a node is dequeued, all its neighbors 

are checked to see if they are unvisited, 
taking time proportional to number of 
neighbors of the node, and summing to O(E) 
over all iterations

• Total time is O(V+E)
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Depth-First Search
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Depth-First Search

Input:  G = (V,E)

for each node u do

 mark u as unvisited

od;

for each unvisited node u 

recursiveDFS(u):
   mark u as visited;
  for each unvisited neighbor v of u do
       recursiveDFS(v)
od
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DFS Example

Example taken from http://atcp07.cs.brown.edu/courses/cs016/Resource/old_lectures/DFS.pdf
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Example taken from http://atcp07.cs.brown.edu/courses/cs016/Resource/old_lectures/DFS.pdf
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Disconnected Graphs

What if the graph is disconnected or is 
directed?
We call DFS on several nodes to visit all nodes

• purpose of second for-loop in non-recursive 
wrapper

a

cb

d

e
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DFS Forest

By keeping track of parents, we want to 
construct a forest resulting from the 
DFS traversal. 
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Depth-First Search #2

• Input:  G = (V,E)
• for each node u do

• mark u as unvisited
• parent[u] := nil

• for each unvisited 
node u do
• parent[u] := u  
   // a root 

• call recursive DFS(u)

• recursiveDFS(u):
• mark u as visited
• for each unvisited 

neighbor v of u do
• parent[v] := u
• call recursiveDFS(v)
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Further Properties of DFS

Let us keep track of some interesting 
information for each node. 

We will timestamp the steps and record the
• discovery time, when the recursive call starts
• finish time, when its recursive call ends
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Depth-First Search #3

• Input:  G = (V,E)
• for each node u do

• mark u as unvisited
• parent[u] := nil

• time := 0
• for each unvisited node 

u do
• parent[u] := u  // a root 
• call recursive DFS(u)

• recursiveDFS(u):
• mark u as visited
• time++
• disc[u] := time
• for each unvisited 

neighbor v of u do
• parent[v] := u
• call recursiveDFS(v)

• time++
• fin[u] := time
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Running Time of DFS

• initialization takes O(V) time
• second for loop in non-recursive 

wrapper considers each node, so O(V) 
iterations

• one recursive call is made for each node
• in recursive call for node u, all its 

neighbors are checked; total time in all 
recursive calls is O(E)
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Nested Intervals

• Let interval for node v be [disc[v],fin[v]].
• Fact: For any two nodes, either one interval 

precedes the other or one is enclosed in the 
other 
 [Reason: recursive calls are nested.]

• Corollary:  v is a descendant of u in the DFS 
forest iff the interval of v is inside the 
interval of u.
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Classifying Edges

• Consider edge (u,v) in directed graph 
 G = (V,E) w.r.t. DFS forest

• tree edge:  v is a child of u
• back edge: v is an ancestor of u
• forward edge: v is a descendant of u 

but not a child
• cross edge: none of the above
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Example of Classifying Edges

a

c

b e

fd

in DFS forest

not in DFS 
forest

tree

tree

tree

treeforward

back

back

cross

1/8

4/5

2/7

3/6 10/11

9/12

a/b  disc./finish. time 

tree edge:  v child of u
back edge: v ancestor of u 
forward edge: v descendant of u, but not child
cross edge: none of the above
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DFS Application:  Topological 
Sort

• Given a directed acyclic graph (DAG), find a  
linear ordering of the nodes such that if (u,v) 
is an edge, then u precedes v.

• DAG indicates precedence among events:
• events are graph nodes, edge from u to v means 

event u has precedence over event v

• Partial order because not all events have to 
be done in a certain order
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Precedence Example

• Tasks that have to be done to eat 
breakfast:
• get glass, pour juice, get bowl, pour cereal, 

pour milk, get spoon, eat.

• Certain events  must happen in a certain 
order (ex: get bowl before pouring milk)

• For other events, it doesn't matter (ex: 
get bowl and get spoon)
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Precedence Example

get glass

pour juice

get bowl

pour cereal

pour milk get spoon

eat breakfast

Order:  glass, juice, bowl, cereal,  milk, spoon, eat.
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Why Acyclic?

• Why must a directed graph be acyclic 
for the topological sort problem?

• Otherwise, no way to order events 
linearly without violating a precedence 
constraint.
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Idea for Topological Sort Alg.

• What does DFS do on a DAG?

eat
juice
glass

milk
cereal

bowl

spoon

consider reverse order of finishing times:
spoon, bowl, cereal, milk, glass, juice, eat

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Topological Sort Algorithm

input:  DAG G = (V,E)
1. call DFS on G to compute finish[v] for 

all nodes v
2. when each node's recursive call 

finishes, insert it on the front of a 
linked list

3. return the linked list
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Correctness of T.S. Algorithm

• Show that if (u,v) is an edge, then v finishes 
before u.

Case 1:  v is finished when u is discovered. Then 
v finishes before u finishes.

Case 2: v is not yet discovered when u is 
discovered.
 Claim:  v will become a descendant of u and 

thus v will finish before u finishes.
Case 3: v is discovered but not yet finished 
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Correctness of T.S. Algorithm

• v is discovered but not yet finished 
when u is discovered.

• Then u is a descendant of v.
• But that would make (u,v) a back edge 

and a DAG cannot have a back edge (the 
back edge would form a cycle).

• Thus Case 3 is not possible.
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DFS Application:  Strongly 
Connected Components

• Consider a directed graph.
• A strongly connected component (SCC) 

of the graph is a maximal set of nodes 
with a (directed) path between every 
pair of nodes

• Problem:  Find all the SCCs of the 
graph.
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What Are SCCs Good For?

• packaging software modules
• construct directed graph of which 

modules call which other modules
• A SCC is a set of mutually interacting 

modules
• pack together those in the same SCC

from http://www.cs.princeton.edu/courses/archive/fall07/cos226/
lectures.html
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SCC Example

h f a e

g c b d

four SCCs
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How Can DFS Help?

• Suppose we run DFS on the directed 
graph.

• All nodes in the same SCC are in the 
same DFS tree.

• But there might be several different 
SCCs in the same DFS tree.
• Example:  start DFS from node h in 

previous graph
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Main Idea of SCC Algorithm

• DFS tells us which nodes are reachable 
from the roots of the individual trees

• Also need information in the "other 
direction": is the root reachable from 
its descendants?

• Run DFS again on the "transpose" graph 
(reverse the directions of the edges)
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SCC Algorithm

input:  directed graph G = (V,E)
1. call DFS(G) to compute finishing times
2. compute GT // transpose graph
3. call DFS(GT), considering nodes in 

decreasing order of finishing times
4. each tree from Step 3 is a separate 

SCC of G
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SCC Algorithm Example

h f a e

g c b d

input graph - run DFS
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After Step 1

c
b g

f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d
e

h

fin
(c

)

fin
(d

)

fin
(b

)

fin
(e

)
fin

(a
)

fin
(h

)

fin
(g

)

fin
(f)

Order of nodes for Step 3: f, g, h, a, e, b, d, c

a

f reaches g reaches h; a reaches b, e;  b reaches c,d 
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After Step 2

h f a e

g c b d

transposed input graph - run DFS with 
specified order of nodes:
f can be reached from h, h can be reached 
from g, ...

f, g, h, a, e, b, d, c
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After Step 3

g
h e
f a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d

SCCs are {f,h,g} and {a,e} and {b,c} and {d}.

b
c
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Running Time of SCC Algorithm

• Step 1: O(V+E) to run DFS
• Step 2: O(V+E) to construct transpose 

graph, assuming adjacency list rep.
• Step 3: O(V+E) to run DFS again
• Step 4: O(V) to output result
• Total: O(V+E)
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Correctness of SCC Algorithm

• Proof uses concept of component graph, 
GSCC, of G.

• Nodes are the SCCs of G; call them C1, 
C2, …, Ck

• Put an edge from Ci to Cj iff G has an 
edge from a node in Ci to a node in Cj
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Example of Component Graph

 {a,e}

{f,h,g}   {d}

 {b,c}

 based on example graph from before
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Facts About Component Graph

• Claim:  GSCC is a directed acyclic graph.
• Why?  
• Suppose there is a cycle in GSCC such 

that component Ci is reachable from 
component Cj and vice versa.

• Then Ci and Cj would not be separate 
SCCs.
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Facts About Component Graph

• Consider any component C during Step 1 
(running DFS on G)

• Let d(C) be earliest discovery time of any 
node in C

• Let f(C) be latest finishing time of any node 
in C

• Lemma:  If there is an edge in GSCC from 
component C' to component C, then 
   f(C') > f(C).
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Proof of Lemma

• Case 1:  d(C') < d(C).
• Suppose x is first node discovered in 

C'.
• By the way DFS works, all nodes in C' 

and C become descendants of x.
• Then x is last node in C' to finish and 

finishes after all nodes in C.
• Thus f(C') > f(C).

C' C



63

Proof of Lemma

• Case 2:  d(C') > d(C).
• Suppose y is first node discovered in C.
• By the way DFS works, all nodes in C become 

descendants of y.
• Then y is last node in C to finish. 
• Since C' → C, no node in C' is reachable from 

y, so y finishes before any node in C' is 
discovered.

C' C
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SCC Algorithm is Correct

• Prove this theorem by induction on 
number of trees found in Step 3 (calling 
DFS on GT).

• Hypothesis is that the first k trees 
found constitute k SCCs of G.

• Basis:  k = 0.  No work to do !
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SCC Algorithm is Correct

• Induction:  Assume the first k trees 
constructed in Step 3 correspond to k SCCs, 
and consider the (k+1)st tree.

• Let u be the root of the (k+1)st tree.
• u is part of some SCC, call it C.
• By the inductive hypothesis, C is not one of 

the k SCCs already found and all nodes in C 
are unvisited when u is discovered.
• By the way DFS works, all nodes in C become part 

of u's tree
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SCC Algorithm is Correct

• Show only nodes in C become part of u's 
tree.  Consider an outgoing edge from C.

w

z

u

C'

CGT:

w

z

u

C'

CG:
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SCC Algorithm is Correct

• By lemma, in Step 1 the last 
node in C' finishes after the 
last node in C finishes.

• Thus in Step 3, some node in 
C' is discovered before any 
node in C is discovered.

• Thus all of C', including w, is 
already visited before u's DFS 
tree starts 

w

z

u

C'

CG:
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Conclusion

• The proof that the algorithm does indeed find the 
strongly connected components is rather typical. 

• The main ideas are quite simple: 
• the DFS forest of G specifies which nodes can be 

reached from their roots
• the DFS forest of Gt specifies from where the 

root can be reached. 
• You need to have a good grasp of the algorithm 

before you can attempt to prove it correct. The 
formalization of the proof can be difficult.
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