Shortest Path Algorithms

Andreas Klappenecker

[based on slides by Prof. Welch]
Single Source Shortest Path

- **Given:**
 - a directed or undirected graph $G = (V,E)$
 - a source node s in V
 - a weight function $w: E \rightarrow \mathbb{R}$.

- **Goal:** For each vertex t in V, find a path from s to t in G with minimum weight.

Warning! Negative weight cycles are a problem:

![Diagram showing a cycle with negative weights](image-url)
Constant Weight Functions

Suppose that the weights of all edges are the same. How can you solve the single-source shortest path problem?

Breadth-first search can be used to solve the single-source shortest path problem. Indeed, the tree rooted at s in the BFS forest is the solution.
Intermezzo: Priority Queues
Priority Queues

A min-priority queue is a data structure for maintaining a set S of elements, each with an associated value called key.

This data structure supports the operations:

- $\text{insert}(S,x)$ which realizes $S := S \cup \{x\}$
- $\text{minimum}(S)$ which returns the element with the smallest key.
- $\text{extract-min}(S)$ which removes and returns the element with the smallest key from S.
- $\text{decrease-key}(S,x,k)$ which decreases the value of x's key.
Simple Array Implementation

Suppose that the elements are numbered from 1 to n, and that the keys are stored in an array key[1..n].

- insert and decrease-key take $O(1)$ time.
- extract-min takes $O(n)$ time, as the whole array must be searched for the minimum.
Binary min-heap Implementation

Suppose that we realize the priority queue of a set with n elements with a binary min-heap.

- extract-min takes $O(\log n)$ time.
- decrease-key takes $O(\log n)$ time.
- insert takes $O(\log n)$ time.

Building the heap takes $O(n)$ time.
Fibonacci-Heap Implementation

Suppose that we realize the priority queue of a set with n elements with a Fibonacci heap. Then

- extract-min takes $O(\log n)$ amortized time.
- decrease-key takes $O(1)$ amortized time.
- insert takes $O(1)$ time.

[One can realize priority queues with worst case times as above]
Dijkstra’s Single Source Shortest Path Algorithm
Dijkstra's SSSP Algorithm

- Assumes all edge weights are nonnegative
- Similar to Prim's MST algorithm
- Start with source node s and iteratively construct a tree rooted at s
- Each node keeps track of tree node that provides cheapest path from s (not just cheapest path from any tree node)
- At each iteration, include the node whose cheapest path from s is the overall cheapest
Prim's vs. Dijkstra's

Prim's MST

Dijkstra's SSSP
Implementing Dijkstra's Alg.

• How can each node \(u \) keep track of its best path from \(s \)?
• Keep an estimate, \(d[u] \), of shortest path distance from \(s \) to \(u \)
• Use \(d \) as a key in a priority queue
• When \(u \) is added to the tree, check each of \(u \)'s neighbors \(v \) to see if \(u \) provides \(v \) with a cheaper path from \(s \):
 • compare \(d[v] \) to \(d[u] + w(u,v) \)
Dijkstra's Algorithm

• input: $G = (V,E,w)$ and source node s

// initialization
• $d[s] := 0$
• $d[v] := \text{infinity}$ for all other nodes v
• initialize priority queue Q to contain all nodes using d values as keys
Dijkstra's Algorithm

- while Q is not empty do
 - u := extract-min(Q)
 - for each neighbor v of u do
 - if d[u] + w(u,v) < d[v] then // relax
 - d[v] := d[u] + w(u,v)
 - decrease-key(Q,v,d[v])
 - parent(v) := u
Dijkstra's Algorithm Example

a is source node

<table>
<thead>
<tr>
<th>iteration</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>abcde</td>
<td>bcde</td>
<td>cde</td>
<td>de</td>
<td>d</td>
<td>Ø</td>
</tr>
<tr>
<td>d[a]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d[b]</td>
<td>∞</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>d[c]</td>
<td>∞</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>d[d]</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>16</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>d[e]</td>
<td>∞</td>
<td>∞</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
Correctness of Dijkstra's Alg.

- Let T_i be the tree constructed after i-th iteration of the while loop:
 - The nodes in T_i are not in Q
 - The edges in T_i are indicated by parent variables
- Show by induction on i that the path in T_i from s to u is a shortest path and has distance $d[u]$, for all u in T_i.
- Basis: $i = 1$.
 - s is the only node in T_1 and $d[s] = 0$.

Correctness of Dijkstra's Alg.

- **Induction**: Assume T_i is a correct shortest path tree. We need to show that T_{i+1} is a correct shortest path tree as well.
- Let u be the node added in iteration i.
- Let $x = \text{parent}(u)$.

Need to show path in T_{i+1} from s to u is a shortest path, and has distance $d[u]$.
Correctness of Dijkstra's Alg

\[T_i \quad T_{i+1} \]

\[P, \text{ path in } T_{i+1} \]

\[\text{from s to u} \]

\[P', \text{ another path from s to u} \]

\[(a,b) \text{ is first edge in } P' \text{ that leaves } T_i \]
Correctness of Dijkstra's Alg

Let P_1 be part of P' before (a,b).
Let P_2 be part of P' after (a,b).
$w(P') = w(P_1) + w(a,b) + w(P_2)$

\[\geq w(P_1) + w(a,b) \quad \text{(nonneg wts)}\]

\[\geq \text{wt of path in } T_i \text{ from } s \text{ to } a + w(a,b) \quad \text{(inductive hypothesis)}\]

\[\geq w(s\rightarrow x \text{ path in } T_i) + w(x,u) \quad \text{(alg chose } u \text{ in iteration } i \text{ and d-values are accurate, by inductive hypothesis)}\]

\[= w(P).\]

So P is a shortest path, and $d[u]$ is accurate after iteration $i+1$.
Running Time of Dijkstra's Alg.

- initialization: insert each node once
 - $O(V \cdot T_{ins})$
- $O(V)$ iterations of while loop
 - one extract-min per iteration => $O(V \cdot T_{ex})$
 - for loop inside while loop has variable number of iterations...
- For loop has $O(E)$ iterations total
 - one decrease-key per iteration => $O(E \cdot T_{dec})$
Running Time using Binary Heaps and Fibonacci Heaps

- \(O(V(T_{\text{ins}} + T_{\text{ex}}) + E\cdot T_{\text{dec}}) \)
- If priority queue is implemented with a binary heap, then
 - \(T_{\text{ins}} = T_{\text{ex}} = T_{\text{dec}} = O(\log V) \)
 - total time is \(O(E \log V) \)
- There are fancier implementations of the priority queue, such as Fibonacci heap:
 - \(T_{\text{ins}} = O(1), T_{\text{ex}} = O(\log V), T_{\text{dec}} = O(1) \) (amortized)
 - total time is \(O(V \log V + E) \)
Using Simpler Heap

- \(O(V(T_{\text{ins}} + T_{\text{ex}}) + E \cdot T_{\text{dec}})\)
- If graph is dense, so that \(|E| = \Theta(V^2)\), then it doesn't help to make \(T_{\text{ins}}\) and \(T_{\text{ex}}\) to be at most \(O(V)\).
- Instead, focus on making \(T_{\text{dec}}\) be small, say constant.
- Implement priority queue with an unsorted array:
 - \(T_{\text{ins}} = O(1), T_{\text{ex}} = O(V), T_{\text{dec}} = O(1)\)
The Bellman-Ford Algorithm
What About Negative Edge

- Dijkstra's SSSP algorithm requires all edge weights to be nonnegative. This is too restrictive, since it suffices to outlaw negative weight cycles.
- Bellman-Ford SSSP algorithm can handle negative edge weights. [It even can detect negative weight cycles if they exist.]
Bellman-Ford: The Basic Idea

- Consider each edge \((u,v)\) and see if \(u\) offers \(v\) a cheaper path from \(s\)
 - compare \(d[v]\) to \(d[u] + w(u,v)\)
- Repeat this process \(|V| - 1\) times to ensure that accurate information propagates from \(s\), no matter what order the edges are considered in
Bellman-Ford SSSP Algorithm

- input: directed or undirected graph $G = (V,E,w)$

// initialization
- initialize $d[v]$ to infinity and $parent[v]$ to nil for all v in V other than the source
- initialize $d[s]$ to 0 and $parent[s]$ to s

// main body
- for $i := 1$ to $|V| - 1$ do
 - for each (u,v) in E do // consider in arbitrary order
 - if $d[u] + w(u,v) < d[v]$ then
 - $d[v] := d[u] + w(u,v)$
 - $parent[v] := u$
Bellman-Ford SSSP Algorithm

// check for negative weight cycles
• for each (u,v) in E do
 • if d[u] + w(u,v) < d[v] then
 • output "negative weight cycle exists"
Running Time of Bellman-Ford

- $O(V)$ iterations of outer for loop
- $O(E)$ iterations of inner for loop
- $O(VE)$ time total
Correctness of Bellman-Ford

Assume no negative-weight cycles.

Lemma: $d[v]$ is never an underestimate of the actual shortest path distance from s to v.

Lemma: If there is a shortest s-to-v path containing at most i edges, then after iteration i of the outer for loop, $d[v]$ is at most the actual shortest path distance from s to v.

Theorem: Bellman-Ford is correct.

This follows from the two lemmas and the fact
Bellman-Ford Example

30

Exercise!
Correctness of Bellman-Ford

• Suppose there is a negative weight cycle.
• Then the distance will decrease even after iteration $|V| - 1$
 • shortest path distance is negative infinity
• This is what the last part of the code checks for.
The Boost Graph Library

The BGL contains generic implementations of all the graph algorithms that we have discussed:

- Breadth-First-Search
- Depth-First-Search
- Kruskal's MST algorithm
- Prim's MST algorithm
- Strongly Connected Components
- Dijkstra's SSSP algorithm
- Bellman-Ford SSSP algorithm

I recommend that you gain experience with this useful library.