Shortest Path Algorithms

Andreas Klappenecker

[based on slides by Prof. Welch]

Single Source Shortest Path

Given:
a directed or undirected graph $G=(V, E)$
a source node s in V

- a weight function w: $E \rightarrow R$.

Goal: For each vertex \dagger in V, find a path from s to \dagger in G with minimum weight
Warning! Negative weight cycles are a problem:

Constant Weight Functions

Suppose that the weights of all edges are the same. How can you solve the singlesource shortest path problem?

Breadth-first search can be used to solve the single-source shortest path problem.
Indeed, the tree rooted at s in the BFS forest is the solution.

Priority Queues

A min-priority queue is a data structure for maintaining a set S of elements, each with an associated value called key.
This data structure supports the operations:

- insert (S, x) which realizes $S:=S \cup\{x\}$
- minimum(S) which returns the element with the smallest key.
- extract-min(S) which removes and returns the element with the smallest key from S.
- decrease-key (S, x, k) which decreases the value of x 's 5

Simple Array Implementation

Suppose that the elements are numbered from 1 to n, and that the keys are stored in an array key[1..n].

- insert and decrease-key take O(1) time.
- extract-min takes $O(n)$ time, as the whole array must be searched for the minimum.

Binary min-heap Implementation

Suppose that we realize the priority queue of a set with n element with a binary min-heap.
extract-min takes $O(\log n)$ time.
decrease-key takes $O(\log n)$ time.

- insert takes $O(\log n)$ time.

Building the heap takes $O(n)$ time.

Fibonacci-Heap Implementation

Suppose that we realize the priority queue of a set with n elements with a Fibonacci heap. Then
extract-min takes $O(\log n$) amortized time.
decrease-key takes $O(1)$ amortized time. insert takes O (1) time.
[One can realize priority queues with worst case times as above]

Dijkstra's Single Source Shortest

 Path Algorithm
Dijkstra's SSSP Algorithm

Assumes all edge weights are nonnegative
Similar to Prim's MST algorithm
Start with source node s and iteratively construct a tree rooted at s
Each node keeps track of tree node that provides cheapest path from s (not just cheapest path from any tree node)
At each iteration, include the node whose cheapest path from s is the overall cheapest

Prim's vs. Dijkstra's

Prim's MST

Dijkstra's SSSP

Implementing Dijkstra's Alg.

How can each node u keep track of its best path from s?

Keep an estimate, $d[u]$, of shortest path distance from s to u

Use d as a key in a priority queue
When u is added to the tree, check each of u 's neighbors v to see if u provides v with a cheaper path from s :
compare $d[v]$ to $d[u]+w(u, v)$

Dijkstra's Algorithm

input: $G=(V, E, w)$ and source node s
// initialization
$d[s]:=0$
$d[v]$:= infinity for all other nodes v
initialize priority queue Q to contain all nodes using d values as keys

Dijkstra's Algorithm

- while Q is not empty do
- $u:=$ extract-min($Q)$
for each neighbor v of u do
- if $d[u]+w(u, v)<d[v]$ then // relax
$d[v]:=d[u]+w(u, v)$
decrease-key(Q,v,d[v])
parent(v) := u

Dijkstra's Algorithm Example

a is source node

iteration						
Q	0	1	2	3	4	5
$d[a]$	0	0	0	0	0	0
$d[b]$	∞	2	2	2	2	2
$d[c]$	∞	12	10	10	10	10
$d[d]$	∞	∞	∞	16	13	13
$d[e]$	∞	∞	11	11	11	11

Correctness of Dijkstra's Alg.

Let T_{i} be the tree constructed after i-th iteration of the while loop:
The nodes in T_{i} are not in Q
The edges in T_{i} are indicated by parent variables
Show by induction on i that the path in T_{i} from s to u is a shortest path and has distance $d[u]$, for all u in T_{i}.

- Basis: i=1.
s is the only node in T_{1} and $d[s]=0$.

Correctness of Dijkstra's Alg.

Induction: Assume T_{i} is a correct shortest path tree.
We need to show that $\mathrm{T}_{\mathrm{i}+1}$ is a correct shortest path tree as well.

- Let u be the node added in iteration i.

Let $x=$ parent(u).

Need to show path in $\mathrm{T}_{\mathrm{i}+1}$ from s to u is a shortest path, and has distance d[u]

Correctness of Dijkstra's Alg

Let $P 1$ be part of P^{\prime} before (a, b). Let P2 be part of P^{\prime} after (a, b). $w\left(P^{\prime}\right)=w(P 1)+w(a, b)+w(P 2)$
$\geq w(P 1)+w(a, b)$ (nonneg $w t s)$

$\geq w t$ of path in T_{i} from s to $a+w(a, b)$ (inductive hypothesis)
$\geq w\left(s->x\right.$ path in $\left.T_{i}\right)+w(x, u)$ (alg chose u in iteration i and d-values are accurate, by inductive hypothesis
$=w(P)$.
So P is a shortest path, and $\mathrm{d}[\mathrm{u}]$ is accurate after iteration $\mathrm{i}+1$.

Running Time of Dijstra's Alg.

initialization: insert each node once
$O\left(V T_{\text {ins }}\right)$
$O(V)$ iterations of while loop
one extract-min per iteration $\Rightarrow>O\left(V T_{\text {ex }}\right)$
for loop inside while loop has variable number of iterations...

For loop has $O(E)$ iterations total
one decrease-key per iteration $=>O\left(E T_{\text {dec }}\right)$

Running Time using
 Binary Heaps and Fibonacci Heaps

$O\left(V\left(T_{\text {ins }}+T_{\text {ex }}\right)+E \cdot T_{\text {dec }}\right)$
If priority queue is implemented with a binary heap, then
$T_{\text {ins }}=T_{\text {ex }}=T_{\text {dec }}=O(\log V)$
total time is $O(E \log V)$
There are fancier implementations of the priority queue, such as Fibonacci heap:
$\mathrm{T}_{\text {ins }}=O(1), \mathrm{T}_{\text {ex }}=O(\log \mathrm{~V}), \mathrm{T}_{\text {dec }}=O(1)$ (amortized) total time is $O(V \log V+E)$

Using Simpler Heap

$O\left(V\left(T_{\text {ins }}+T_{\text {ex }}\right)+E \cdot T_{\text {dec }}\right)$

If graph is dense, so that $|E|=\Theta\left(V^{2}\right)$, then it doesn't help to make $T_{\text {ins }}$ and $T_{\text {ex }}$ to be at most $O(\mathrm{~V})$.
Instead, focus on making $T_{\text {dec }}$ be small, say constant.
Implement priority queue with an unsorted array:
$\mathrm{T}_{\text {ins }}=O(1), T_{\text {ex }}=O(\mathrm{~V}), T_{\text {dec }}=O(1)$

The Bellman-Ford Algorithm

What About Negative Edge

Dijkstra's SSSP algorithm requires all edge weights to be nonnegative. This is too restrictive, since it suffices to outlaw negative weight cycles.

- Bellman-Ford SSSP algorithm can handle negative edge weights.
[It even can detect negative weight cycles if they exist.]

Bellman-Ford: The Basic Idea

Consider each edge (u, v) and see if u offers v a cheaper path from s
compare d[v] to d[u] + w(u,v)
Repeat this process $|V|-1$ times to ensure that accurate information propgates from s, no matter what order the edges are considered in

Bellman-Ford SSSP Algorithm

```
    input: directed or undirected graph G = V,E,w)
//initialization
    initialize d[v] to infinity and parent[v] to nil for all v in V
    other than the source
    initialize d[s] to 0 and parent[s] to s
// main body
    for i:= 1 to |V| - 1 do
        - for each (u,v) in E do // consider in arbitrary order
        if d[u]+w(u,v)<d[v] then
        d[v]:= d[u] + w(u,v)
        parent[v] := u
```


Bellman-Ford SSSP Algorithm

// check for negative weight cycles
for each (u, v) in E do
if $d[u]+w(u, v)<d[v]$ then output "negative weight cycle exists"

Running Time of Bellman-Ford

$O(V)$ iterations of outer for loop
$O(E)$ iterations of inner for loop
O(VE) time total

Correctness of Bellman-Ford

Assume no negative-weight cycles.
Lemma: $d[v]$ is never an underestimate of the actual shortest path distance from s to v.

Lemma: If there is a shortest s-to-v path containing at most i edges, then after iteration i of the outer for loop, $d[v]$ is at most the actual shortest path distance from s to v.

Theorem: Bellman-Ford is correct.
This follows from the two lemmas and the fact ${ }^{29}$

Bellman-Ford Example

(b) | process edges in order |
| :--- |
| (c, b) |
| (a, b) |

Exercise!

Correctness of Bellman-Ford

Suppose there is a negative weight cycle.
Then the distance will decrease even after iteration |V|-1
shortest path distance is negative infinity
This is what the last part of the code checks for.

The Boost Graph Library

The BGL contains generic implementations of all the graph algorithms that we have discussed:

- Breadth-First-Search

Depth-First-Search
Kruskal's MST algorithm
Prim's MST algorithm
Strongly Connected Components
Dijkstra's SSSP algorithm
Bellman-Ford SSSP algorithm
I recommend that you gain experience with this useful library. Recommended reading: The Boost Graph Library by J.G. Siek, L.-Q Lee, and A. Lumsdaine, Addison-Wesley, 2002.

