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Randomized Algorithms

A randomized algorithm is an algorithm that makes 
random choices during their execution.

A randomized algorithm uses values generated by a 
random number generator to decide the next step at 
several branches of its execution.

Therefore, the steps taken by a randomized algorithm 
might differ from execution to execution, even if the 
input remains the same. 2
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Why Randomization?

Randomization can lead to simple 
algorithms that are easy to 
implement.

Randomization can lead to efficient 
implementations.
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Running Time

The designer of a randomized algorithm must 
determine what kind of running time one can expect.

The running time is now a random variable, and one 
needs tools from probability theory to estimate it.
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Motivation (1)

Suppose that a company has several servers containing 
its database. The database is stored in several 
locations (e.g. east coast and west coast).

At the end of the business day, the company wants to 
verify that the copies of the databases are still 
consistent. Transmission of the data is not feasible. 
How can we whether the content is the same?  

5
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Motivation (2)

Suppose we have implemented an extremely fast 
algorithm to multiply very large matrices (e.g. of 
dimension 100,000x100,000). 

How can we verify whether the computation was 
correct?  
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Motivation (3)

In the RSA key exchange, we need to form the product 
of two very large primes (each having 1000 digits or 
more).

How can we efficiently check whether a number is 
prime?  
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Basics from Probability Theory

8
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Sample Spaces

The possible outcomes of an experiment are called the 
sample space Ω.

For example, the sample space of a coin tossing 
experiment is Ω={head, tail}.

The sample space of rolling a dice is Ω={1,2,3,4,5,6}.  
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σ-Algebra

• A probability measure is not necessarily defined on 
all subsets of the sample space, but only on those 
that are considered events. We will have a uniform 
way of reasoning about event by requiring that they 
form a σ-algebra. 

• A σ-algebra F is a collection of subsets of a sample 
space Ω such that 

• the empty set is contained in F,

• if E in F, then its complement Ec = Ω\E is in F,

• a countable union of sets in F is contained in F.10
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σ-Algebra Example

Let Ω = {1,2,3,4,5,6} the sample space of a die. 
Suppose we are interested in the events: 

• D = {1,2}, the value is less than 3. 

• E = {3,4,5,6}, the value is 3 or more. 
Then the smallest σ-algebra F containing D and E is 
given by F={ ∅, D, E, Ω }.

The empty set ∅ is called the impossible event. 

The set  Ω is called the certain event.    
11
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σ-Algebra

The σ-algebra allows one to talk about 
• the impossible event 
• complementary event
• the union of events
• the certain event

When rolling a dice, the event that the outcome is an 
even face value is {2,4,6}. The event that the outcome 
is a value larger than 4 is {5,6}. 
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Operations on Events
Let D and E be events. Then 

• D ∪ E is an event 

• D ∩ E is an event

• D \ E is an event
Indeed, let E1=D, E2=E,  and E3=E4=...=∅. Then

∪ Ei = D ∪ E. 

The other two properties are also easy to show.
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Probability Measure

Let F be a σ-algebra over a sample space Ω. A 
probability measure on F is a function Pr: F -> [0,1] such 
that 

• the certain event satisfies Pr[Ω]=1,

• if the events E1, E2, ... in F are mutually disjoint, 
then 

14
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Properties of Probability Measures

Let E be an event. Then 
1 = Pr[Ω] = Pr[E] + Pr[Ec],

as E and  Ec are disjoint.
Therefore, the complementary event Ec has probability 

Pr[Ec] = 1 - Pr[E].
In particular, the impossible event has probability 

Pr[∅]=1-Pr[Ω]=0 

15
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Properties of Probability Measures

Let D and E be events such that D⊆E.

Then Pr[D] <= Pr[E]. 

Why? 

16
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Properties of Probability Measures

Let D and E be events. Then 
Pr[ D∪E ] = Pr[D] + Pr[E] - Pr[D∩E].

Indeed, we have 
(a) Pr[D] = Pr[D - (D∩E)] + Pr[D∩E],  

(b) Pr[E] = Pr[E - (D∩E)] + Pr[D∩E]. 

Since
Pr[D∪E ] = Pr[D - (D∩E)] + Pr[E - (D∩E)] + Pr[D∩E],

the claim follows from (a) and (b). 
17
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Uniform Probability Distribution

Let Ω be a finite sample space. 
Let F = P( Ω ) be the σ-algebra consisting of all subsets 
of Ω. 
Then the probability measure Pr: F->[0,1] defined by 

Pr[{s}] = 1/| Ω| 
for all s in Ω is called the uniform probability 
distribution on Ω. 

18
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Continuous Probability Distribution

The continuous uniform probability distribution over an 
interval [a,b] associates to each subinterval [c,d] of 
[a,b] the probability 

Pr[ [c,d] ] = (d-c)/(b-a). 

Notice that the probability of any event {x} with x in 
[a,b] is 0, since Pr[ {x} ] = Pr[ [x,x] ] = 0. 

19
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Continuous Probability Distribution

For the sample space Ω = [a,b], one cannot choose the 
σ-algebra F=P(Ω), since there does not exist any 
function on P(Ω) = P([a,b]) that satisfies our axioms of 
a probability measure.

Instead, define F to be the smallest σ-algebra on Ω =
[a,b] that contains the intervals [c,d] for all c,d in the 
range a <= c <= d <= b. Then there exists a function Pr: F 
-> [0,1] such that Pr[ [c,d] ] = (d-c)/(b-a). It is called 
the Borel measure on F. 

20
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Union Bound

Let I ⊆{1,2,3,...}.  Let Ei with i in I be a set of events. 

These events do not need to be disjoint. 
Then the union bound states that

This simple bound is enormously useful, as it is easy to 
compute.  

21
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Conditional Probabilities

Let D and E be events such that Pr[E] >0. 

The conditional probability Pr[D|E] is defined as

One can interpret Pr[D|E] as the probability that the 
event D occurs, assuming that the event E occurs. 

22
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Useful Multiplication Formula

Quite often, it is easy to determine 
conditional probabilities: 
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Independent Events

Two events D and E are called 
independent if and only if 

If D and E are independent, then

24
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Verifying Polynomial Identities
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Polynomial Identities

Suppose that we want to check whether two polynomials 
in x with integer coefficients are the same.

For example, is
(x+1)(x-2)(x+3)(x-4)(x+5)(x-6)

the same as 
x6-7x3+25 ? 

26
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Deterministic Algorithm

Given two polynomials F(x) and G(x). Convert them to 
the canonical form

If the canonical forms are the same, then the 
polynomials F(x) and G(x) must be the same. 

Slow! It takes θ(d2) coefficient multiplications.
27
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Randomized Algorithm

Input: Two polynomials F(x) and G(x).
Let d = max( deg F(x), deg G(x) ). 
Choose an integer r uniformly at random from the 
interval [1..100d]. 
return F(r) = G(r).

Fast! O(d) multiplications of coefficients. 
However, the result can be wrong!

28
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Randomized Algorithm

The algorithm will never err if F(x) is the same as G(x). 

The algorithm might err if F(x) and G(x) are not equal.

How likely is it that the algorithm errs?  

29
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Randomized Algorithm

The algorithm will report that F and G are the same 
although they are different if and only if r is a root of 
the polynomial F(x)-G(x).   

However, F(x)-G(x) has degree at most d. There are at 
most d integers r that can be a root of F(x)-G(x). 

Since there are 100d integers in [1..100d], the chance 
that the algorithm errs is <= d/100d = 1/100. 

30
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Reducing the Failure Probability, 
Version 1

We could reduce the probability of failure by choosing 
a larger range of integers. However, [1..1000d] will only 
give Pr[failure] <= 1/1000. 

This does not offer too much improvement, so we keep 
the originally proposed randomized algorithm. 

31
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Reducing the Failure Probability, 
Version 2

Let us run the algorithm k times.
Let Ei denote the event that, on the i-th run of the 
algorithm, we choose a root ri such that F(ri)-G(ri)=0.
The events Ei are independent. Failure probability:  
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Random Variables
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Random Variable

Let F be a σ-algebra over a sample space Ω. A random 
variable X is a function Ω -> R such that 

        { z in Ω | X(z) <= x } 
is an event in F for each x in R. 
We write X <= x for this event. 

There is nothing random about a random variable!
It is simply a function that allows one to specify events 
as preimages. 

34
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Example 1

Let X be the random variable denoting the sum of face 
values of a pair of dice. Then X <= 3 is a shorthand  for 
the event {(1,1), (1,2), (2,1)}. 

35
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Example 2

Let Y be the random variable counting the number of 
heads during three subsequent coin tosses. Then

• Y <= 0 is the event {(tail,tail,tail)}

• Y <= 1 is the event {(tail,tail,tail), (head,tail,tail), 
(tail,head,tail), (tail,tail,head) }

36
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Discrete Random Variable

A random variable with countable image is 
called a discrete random variable.

For discrete random variables, X=a is an 
event. 

37
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Expectation Value

Let X be a discrete random variable over 
a probability space (Ω,F,Pr). 

The expectation value (or mean) of X is 
given by  

38
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Example

Let X be the random variable denoting the sum of face 
values of a pair of fair dice. 

What is the expectation value E[X] ? 

39
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Example 1

• Let Y denote the number of heads in three 
subsequent fair coin tosses. 

• Y=0 is { (t,t,t) } 
• Y=1 is { (h,t,t), (t,h,t), (t,t,h) } 
• Y=2 is { (h,h,t), (h,t,h), (t,h,h) } 
• Y=3 is { (h,h,h) } 
• Pr[Y=0] = Pr[Y=3] = 1/8, Pr[Y=1] =Pr[Y=2]= 3/8

• E[X] = 0(1/8)+1(3/8)+2(3/8)+3(1/8) = 12/8=1.5
40
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Example 2

E[X] = 2Pr[X=2]+3Pr[X=3]+...+12Pr[X=12]
 = 2(1/36)+3(2/36)+4(3/36)+5(4/36)+6(5/36)+7(6/36) 

    +8(5/36)+9(4/36)+10(3/36)+11(2/36)+12(1/36) 

 = 7 41
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Linearity of Expectation

Let X and Y be random variables. 
Let a and b be real numbers. 
Then  
         E[aX+bY] = aE[X]+bE[Y].

Simple but extremely useful!

42
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Hat Check Girl
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Hat Check Girl

Suppose n persons give their hat to the hat check girl. 
The girl is upset and hands each person a random hat 
(where the hat is chosen uniformly at random).

How many persons can expect to get their own hat 
back? 

44
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Hat Check Girl

• The sample space Ω = {1,2,...,n}.
• We will allow all subsets of Ω to be events, that is, 

the σ-algebra is F=P(Ω).
• For p in Ω, the event {p} has the interpretation that 

person p received her own hat.
• Since each of the n persons has an equal chance to 

receive the hat of person p, it follows that              
Pr[person p receives her own hat] = Pr[{p}]=1/n  

45
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Hat Check Girl

• Let Xi denote the random variable that is 
• equal to 1 if the i-th person receives her own hat,
• and 0 otherwise

• Then Pr[Xi = 1]=1/n
• E[Xi] = 1 Pr[Xi=1] + 0 Pr[Xi=0] = 1/n
•  The random variable X = X1+ X2 + ... + Xn counts the 

number of person receiving their own hat.  

46
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Hat Check Girl

The number of persons receiving their 
own hat is expected to be equal to 
                E[X] = n(1/n) = 1
by linearity of expectation.  

47
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Geometric Random Variables 
and Coupon Collection
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Bernoulli Distribution 
or Biased Coins
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Geometric Distribution
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Coupon Collection
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Coupon Collection

52
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The Monte Carlo Method
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Motivation

           How can we calculate π ?

54
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The Main Idea (1)

Given: A 2x2 square centered at (0,0) with a circle of radius 
1 inscribed.
The area of the circle is π and the area of the square is 4.
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The Main Idea (2)

Choose points uniformly at random in the square.
Ratio of (# points in the circle)/(# all points) approximates 
π.   
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Randomly Chosen Points

• Let (X,Y) be a point chosen uniformly at random in 
the 2x2 square. Equivalently, we can choose X and Y 
independently from a uniform distribution on [-1,1].

• Let Z be the indicator random variable that is 1 if 
the point falls within the circle and 0 otherwise. Put 
differently, Z=1 if and only if 

• Pr[Z=1] = π/4. 
57
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Estimating π

• Suppose we repeat this experiment m times, where 
Zi denotes the value of Z at the i-th run. 

• Let 

• Then 

• Therefore, W’=4W/m is a natural estimate for π.

58
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A Chernoff Bound

• Let X1, X2, ..., Xm be random variables such that        
Pr[Xi=1]=pi and Pr[Xi=0]=1-pi.

• Let  

• For 0<δ<1, we have 

59
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Approximating π

Applying the Chernoff bound to our estimate of π, we 
get

Therefore, we see that the probability W’ deviates 
significantly from π exponentially decreases with the 
number of trials m. 
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