CSCE 411
 Design and Analysis of Algorithms

Andreas Klappenecker

Goal of this Lecture

Recall the basic asymptotic notations such as Big Oh, Big Omega, Big Theta, and little oh.

Recall some basic properties of these notations

Give some motivation why these notions are defined in the way they are.

Give some examples of their usage.

Summary

Let $g: N->C$ be a real or complex valued function on the natural numbers.
$O(g)=\left\{f: N->C \mid \exists u>0 \exists n_{0} \in N\right.$
$|f(n)|<=u|g(n)|$ for all $\left.n>=n_{0}\right\}$
$\Omega(g)=\left\{f: N->C \mid \exists d>0 \exists n_{0} \in N\right.$
$d|g(n)|<=|f(n)|$ for all $\left.n>=n_{0}\right\}$
$\Theta(g)=\left\{f: N-C \mid \exists u, d>0 \exists n_{0} \in N\right.$
$d|g(n)|<=|f(n)|<=u|g(n)|$ for all $\left.n>=n_{0}\right\}$

Time Complexity

- Estimating the time-complexity of algorithms, we simply want count the number of operations. We want to be
- independent of the compiler used,
- ignorant about details about the number of instructions generated per high-level instruction,
- independent of optimization settings,
- and architectural details.

This means that performance should only be compared up to multiplication by a constant.
We want to ignore details such as initial filling the pipeline. Therefore, we need to ignore the irregular

Big Oh

Big Oh Notation

Let $f, g: N$ be function from the natural numbers to the set of real numbers.

We write $f \in O(g)$ if and only if there exists some real number n_{0} and a positive real constant u such that

$$
|f(n)| \ll u|g(n)|
$$

for all n in S satisfying $n>=n_{0}$

Big Oh

Let g: N-> C be a function.

Then $O(g)$ is the set of functions $O(g)=\{\mathrm{f}: \mathrm{N}->\mathrm{C} \mid$ there exists a constant u and a natural number n_{0} such that $|f(n)|<=u \lg (n) \mid$ for all $\left.n>=n_{0}\right\}$

Notation

We have

$$
O\left(n^{2}\right) \subseteq O\left(n^{3}\right)
$$

but it is usually written as

$$
O\left(n^{2}\right)=O\left(n^{3}\right)
$$

This does not mean that the sets are equal!!!! The equality sign should be read as 'is a subset of'.

Notation

We write $n^{2}=O\left(n^{3}\right)$,
[read as: n^{2} is contained in $O\left(n^{3}\right)$]

But we never write

$$
O\left(n^{3}\right)=n^{2}
$$

Example $O\left(n^{2}\right)$

Big Oh Notation

The Big Oh notation was introduced by the number theorist Paul Bachman in 1894. It perfectly matches our requirements on measuring time complexity.

Example:

$$
4 n^{3}+3 n^{2}+6 \text { in } O\left(n^{3}\right)
$$

The biggest advantage of the notation is that complicated expressions can be dramatically simplified.

Quiz

Does O (1) contain only the constant functions?

Tool 1: Limits

Limit

Let $\left(x_{n}\right)$ be a sequence of real numbers.
We say that μ is the limit of this sequence of numbers and write $\mu=\lim _{n \rightarrow \infty} x_{n}$
if and only if for each $\varepsilon>0$ there exists a natural number n_{0} such that $\left|x_{n}-\mu\right|<\varepsilon$ for all $n>=n_{0}$


```
Limit - Again!
```

Let $\left(x_{n}\right)$ be a sequence of real numbers.

We say that μ is the limit of this sequence of numbers and write $\mu=\lim _{n \rightarrow \infty} x_{n}$
if and only if for each $\varepsilon>0$ there exists a natural number n_{0} such that $\left|x_{n}-\mu\right|<\varepsilon$

How do we prove that $g=O(f)$?

Lemma 1. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_{0}$ for some positive integer n_{0}. If the limit $\lim _{n \rightarrow \infty}|f(n) / g(n)|$ exists and is finite then $f(n)=O(g(n))$.

Proof. If $\lim _{n \rightarrow \infty}|f(n) / g(n)|=C$, then for each $\epsilon>0$ there exists a positive integer $n_{0}(\epsilon)$ such that $C-\epsilon \leq|f(n) / g(n)| \leq C+\epsilon$ for all $n \geq n_{0}$; this shows that $|f(n)| \leq(C+\epsilon)|g(n)|$ for all integers $n \geq n_{0}(\epsilon)$. It follows that $f(n)=O(g(n))$.

Big versus Little Oh

$$
\begin{aligned}
& O(g)=\left\{f: N->C \mid \exists u>0 \exists n_{0} \in N\right. \\
& \left.\qquad|f(n)|<=u|g(n)| \text { for all } n>=n_{0}\right\} \\
& O(g)=\left\{f: N->C\left|\lim _{n \rightarrow \infty}\right| f(n)|/|g(n)|=0\}\right.
\end{aligned}
$$

Quiz

It follows that $o(f)$ is a subset of $O(f)$.

Why?

Quiz

What does $f=o(1)$ mean?

Hint:
$o(g)=\left\{f: N->C\left|\lim _{n \rightarrow \infty}\right| f(n)|/|g(n)|=0\}\right.$

Quiz

Some computer scientists consider little oh notations too sloppy.

For example, $1 / n+1 / n^{2}$ is $o(1)$
but they might prefer $1 / n+1 / n^{2}=O(1 / n)$.

Why is that?

Tool 2: Limit Superior

Limits? There are no Limits!

The limit of a sequence might not exist.
For example, if $f(n)=1+(-1)^{n}$ then $\lim _{n \rightarrow \infty} f(n)$
does not exist.

Least Upper Bound (Supremum)

The supremum b of a set of real numbers S is the defined as the smallest real number b such that $b>=x$ for all s in S.
We write $s=\sup S$.
sup $\{1,2,3\}=3$,
$\sup \left\{x: x^{2}<2\right\}=\operatorname{sqrt}(2)$,
$\sup \left\{(-1)^{\wedge} n-1 / n: n>=0\right\}=1$.

The Limit Superior

The limit superior of a sequence $\left(x_{n}\right)$ of real numbers is defined as
$\lim _{\sup _{n \rightarrow \infty}} x_{n}=\lim _{n \rightarrow \infty}\left(\sup \left\{x_{m}: m>=n\right\}\right)$
[Note that the limit superior always exists in the extended real line (which includes $\pm \infty$), as sup $\left\{x_{m}: m>=n\right\}$) is a monotonically decreasing function of n and is bounded below by any

The Limit Superior

The limit superior of a sequence of real numbers is equal to the greatest accumulation boint of the seauence.

Necessary and Sufficient Condition

Lemma 2. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_{0}$ for some positive integer n_{0}. We have $\lim \sup _{n \rightarrow \infty}|f(n) / g(n)|<\infty$ if and only if $f(n)=O(g(n))$.

Proof. If $\lim \sup _{n \rightarrow \infty}|f(n) / g(n)|=C$, then for each $\epsilon>0$ we have

$$
|f(n)| /|g(n)|>C+\epsilon
$$

for at most finitely many positive integers; so $|f(n)| \leq(C+\epsilon)|g(n)|$ holds for all integers $n \geq n_{0}(\epsilon)$ for some positive integer $n_{0}(\epsilon)$, and this proves that $f(n)=O(g(n))$.

Conversely, if $f(n)=O(g(n))$, then there exists a positive integer n_{0} and a constant C such that $g(n) \neq 0$ and $|f(n)| /|g(n)| \leq C$ for all $n \geq n_{0}$. This implies that $\lim _{\sup }^{n \rightarrow \infty}|~| f(n) / g(n) \mid \leq C$.

Big Omega

Big Omega Notation

Let $f, g: N$-> R be functions from the set of natural numbers to the set of real numbers.

We write $g \in \Omega(f)$ if and only if there exists some real number n_{0} and a positive real constant C such that
$|g(n)|>=C|f(n)|$
for all n in N satisfying $n>=n_{0}$.

Big Omega

Theorem: $f \in \Omega(g)$ iff $\lim \inf _{n \rightarrow \infty}|f(n) / g(n)|>0$.
Proof: If lim inf $|f(n) / g(n)|=C>0$, then we have for each $\varepsilon>0$ at most finitely many positive integers satisfying $|f(n) / g(n)|<C-\varepsilon$. Thus, there exists an n_{0} such that
$|f(n)| \geq(C-\varepsilon)|g(n)|$
holds for all $n \geq n_{0}$, proving that $f \in \Omega(g)$.
The converse follows from the definitions.

Big Theta

Big Theta Notation

Let S be a subset of the real numbers (for instance, we can choose S to be the set of natural numbers).
If f and g are functions from S to the real numbers, then we write $g \in \Theta(f)$ if and only if
there exists some real number n_{0} and positive real constants C and C ' such that

$$
C|f(n)|<=|g(n)| \ll C^{\prime}|f(n)|
$$

for all n in S satisfying $n>=n_{0}$.
Thus, $\Theta(f)=O(f) \cap \Omega(f)$

Examples

Sums

$1+2+3+\ldots+n=n(n+1) / 2$
$1^{2}+2^{2}+3^{2}+\ldots+n^{2}=n(n+1)(2 n+1) / 6$
We might prefer some simpler formula, especially when looking at sum of cubes, etc.
The first sum is approximately equal to $n^{2} / 2$, as $n / 2$ is much smaller compared to $n^{2} / 2$ for large n. The second sum is approximately equal to $n^{3} / 3$ plus smaller terms.

Approximate Formulas

(complicated function of n)
= (simple function of n)

+ (bound for the size of the error in terms of n)

Approximate Formulas

Instead of
$1^{2}+2^{2}+3^{2}+\ldots+n^{2}=n^{3} / 3+n^{2} / 2+n / 6$
we might write
$1^{2}+2^{2}+3^{2}+\ldots+n^{2}=n^{3} / 3+O\left(n^{2}\right)$

Approximate Formulas

If we write $f(n)=g(n)+O(h(n))$, then this means that there exists a constant $u>0$ and a natural number n_{0} such that
$|f(n)-g(n)|<=u|h(n)|$
for all $n>=n_{0}$.

Bold Conjecture

$$
1^{k}+2^{k}+3^{k}+\ldots+n^{k}=n^{k+1} /(k+1)+O\left(n^{k}\right)
$$

Proof

Write $S(n)=1^{k}+2^{k}+3^{k}+\ldots+n^{k}$
We try to estimate $S(n)$.

Proof

Write $S(n)=1^{k}+2^{k}+3^{k}+\ldots+n^{k}$
We try to estimate $S(n)$.

$$
\begin{aligned}
& S(n)>\int_{0}^{n} x^{k} d x \\
& S(n)>n^{k+1} /(k+1)
\end{aligned}
$$

Proof

We have shown that
$n^{k+1} /(k+1)<1^{k}+2^{k}+3^{k}+\ldots+n^{k}<(n+1)^{k+1} /(k+1)$.
Let's subtract $n^{k+1} /(k+1)$ to get
$0<1^{k}+2^{k}+3^{k}+\ldots+n^{k}-n^{k+1} /(k+1)$
$<\left((n+1)^{k+1}-n^{k+1}\right) /(k+1)$

$$
\begin{aligned}
& \text { Proof } \\
& \begin{array}{l}
\left((n+1)^{k+1}-n^{k+1}\right) /(k+1)=(k+1)^{-1} \Sigma_{i=0} 0^{k+1} C(k+1, i) n^{i}-n^{k+1} \\
<=\Sigma_{i=0}^{k} \quad C(k+1, i) n^{k} \\
\quad / / \text { simplify and enlarge terms } \\
<=\text { (some mess involving } k) n^{k} \\
\text { It follows that } \\
\left.S(n)-n^{k+1} /(k+1)<\text { (mess involving } k\right) n^{k}
\end{array}
\end{aligned}
$$

End of Proof

Since the mess involving k does not depend on n, we have proven that
$1^{k}+2^{k}+3^{k}+\ldots+n^{k}=n^{k+1} /(k+1)+O\left(n^{k}\right)$
holds!

Harmonic Number

The Harmonic number H_{n} is defined as

$$
H_{n}=1+1 / 2+1 / 3+\ldots+1 / n .
$$

We have
$H_{n}=\ln n+\gamma+O(1 / n)$
where γ is the Euler-Mascheroni constant
$\gamma=\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right]=\int_{1}^{\infty}\left(\frac{1}{\lfloor x\rfloor}-\frac{1}{x}\right) d x .=0.577 \ldots$
$\log n!$
Recall that $1!=1$ and $n!=(n-1)!n$.

Theorem: $\log n!=\Theta(n \log n)$
Proof:
$\log n!=\log 1+\log 2+\ldots+\log n$ $<=\log n+\log n+\ldots+\log n=n \log n$
Hence, $\log n!=O(n \log n)$.

$$
\log n!
$$

On the other hand,

$$
\begin{aligned}
\log n! & =\log 1+\log 2+\ldots+\log n \\
& >\log (\lfloor(n+1) / 2\rfloor)+\ldots+\log n \\
> & =(\lfloor(n+1) / 2\rfloor) \log (\lfloor(n+1) / 2\rfloor) \\
> & =n / 2 \log (n / 2) \\
& =\Omega(n \log n)
\end{aligned}
$$

For the last step, note that

$$
\lim _{\inf _{n \rightarrow \infty}(n / 2 \log (n / 2)) /(n \log n)=\frac{1}{2} . . .}
$$

Reading Assignment

Read Chapter 1-3 in [CLRS]
Chapter 1 introduces the notion of an algorithm
Chapter 2 analyzes some sorting algorithms
Chapter 3 introduces Big Oh notation

