
Sorting Lower Bound
Andreas Klappenecker

based on slides by Prof. Welch

1

2

Insertion Sort Review
 How it works:

 incrementally build up longer and longer prefix of
the array of keys that is in sorted order

 take the current key, find correct place in sorted
prefix, and shift to make room to insert it

 Finding the correct place relies on
comparing current key to keys in sorted
prefix

 Worst-case running time is Θ(n2)

3

Insertion Sort Demo

 http://sorting-algorithms.com

4

Heapsort Review

 How it works:

 put the keys in a heap data structure

 repeatedly remove the min from the heap

 Manipulating the heap involves comparing keys to
each other

 Worst-case running time is Θ(n log n)

5

Heapsort Demo

 http://www.sorting-algorithms.com

6

Mergesort Review
 How it works:

 split the array of keys in half

 recursively sort the two halves

 merge the two sorted halves

 Merging the two sorted halves involves
comparing keys to each other

 Worst-case running time is Θ(n log n)

7

Mergesort Demo

 http://www.sorting-algorithms.com

8

Quicksort Review
 How it works:

 choose one key to be the pivot

 partition the array of keys into those keys <
the pivot and those ≥ the pivot

 recursively sort the two partitions

 Partitioning the array involves comparing keys
to the pivot

 Worst-case running time is Θ(n2)

9

Quicksort Demo

 http://www.sorting-algorithms.com

10

Comparison-Based
Sorting

 All these algorithms are comparison-based

 the behavior depends on relative values of keys, not
exact values

 behavior on [1,3,2,4] is same as on [9,25,23,99]

 Fastest of these algorithms was O(n log n).

 We will show that's the best you can get with
comparison-based sorting.

11

Decision Tree
 Consider any comparison based sorting

algorithm

 Represent its behavior on all inputs of a fixed
size with a decision tree

 Each tree node corresponds to the execution
of a comparison

 Each tree node has two children, depending on
whether the parent comparison was true or
false

 Each leaf represents correct sorted order for
that path

12

Decision Tree Diagram
first comparison:
check if ai ≤ aj

second comparison
if ai ≤ aj : check if

ak ≤ al

second comparison
if ai > aj : check if

am ≤ ap

third comparison
if ai ≤ aj and ak ≤ al :

check if ax ≤ ay

YES

YES YES

NO

NO NO

13

Insertion Sort

for j := 2 to n to
 key := a[j]
 i := j-1
 while i > 0 and a[i] > key do
 a[i+1] := a[i]
 i := i -1
 endwhile
 a[i+1] := key
endfor

comparison

14

Insertion Sort for n = 3
a1 ≤ a2 ?

a2 ≤ a3 ? a1 ≤ a3 ?

a1 ≤ a3 ? a2 ≤ a3 ?

NOYES

a1 a2 a3

a1 a3 a2 a3 a1 a2 a2 a3 a1 a3 a2 a1

a2 a1 a3

NO

NO

NO

NO

YES

YES

YES

YES

15

Insertion Sort for n = 3
a1 ≤ a2 ?

NO

a2 ≤ a3 ? a1 ≤ a3 ?

a1 ≤ a3 ? a2 ≤ a3 ?

YES

a1 a2 a3

a1 a3 a2 a3 a1 a2 a2 a3 a1 a3 a2 a1

a2 a1 a3

NO

NO

NO

NO

YES

YES

YES

YES

16

How Many Leaves?
 Must be at least one leaf for each

permutation of the input

 otherwise there would be a situation that was not
correctly sorted

 Number of permutations of n keys is n!.

 Idea: since there must be a lot of leaves,
but each decision tree node only has two
children, tree cannot be too shallow

 depth of tree is a lower bound on running time

17

Key Lemma

Height of a binary tree with n! leaves is

Ω(n log n).

Proof: The maximum number of leaves in a binary
tree with height h is 2h.

h = 1,
21 leaves h = 2, 22 leaves h = 3, 23 leaves

18

Proof of Lemma
 Let h be the height of decision tree, so it

has at most 2h leaves.

 The actual number of leaves is n!, hence

" " 2h ≥ n!

" " h ≥ log(n!)

" " = log(n(n-1)(n-1)…(2)(1))

" " ≥ (n/2)log(n/2) by algebra

" " = Ω(n log n)

19

Finishing Up
 Any binary tree with n! leaves has

height Ω(n log n).
 Decision tree for any c-b sorting alg

on n keys has height Ω(n log n).

 Any c-b sorting alg has at least one
execution with Ω(n log n)
comparisons

 Any c-b sorting alg has Ω(n log n)
worst-case running time.

