Divide and Conquer

Andreas Klappenecker

[based on slides by Prof. Welch]

Divide and Conquer Paradigm

An important general technique for designing algorithms:
divide problem into subproblems
recursively solve subproblems

- combine solutions to subproblems to get solution to original problem
- Use recurrences to analyze the running time of such algorithms

Mergesort

Example: Mergesor \dagger

DIVIDE the input sequence in half RECURSIVELY sort the two halves
basis of the recursion is sequence with 1 key
COMBINE the two sorted subsequences by merging them

Mergesort Example

Mergesort Animation

- http://ccl.northwestern.edu/netlogo/ models/run.cgi?MergeSort.862.378

Recurrence Relation for

Let $T(n)$ be worst case time on a sequence of n keys
If $n=1$, then $T(n)=\Theta(1)$ (constant)
If $n>1$, then $T(n)=2 T(n / 2)+\Theta(n)$
two subproblems of size $n / 2$ each that are solved recursively
$\Theta(n)$ time to do the merge

Recurrence Relations

How To Solve Recurrences

Ad hoc method:
expand several times
guess the pattern
can verify with proof by induction

Master theorem

general formula that works if recurrence has the form $T(n)=a T(n / b)+f(n)$
a is number of subproblems
n / b is size of each subproblem
$f(n)$ is cost of non-recursive part

Master Theorem

Consider a recurrence of the form

$$
T(n)=a T(n / b)+f(n)
$$

with $a>=1, b>1$, and $f(n)$ eventually positive.
a) If $f(n)=O\left(n^{\left.\log _{b}(a)-\varepsilon\right)}\right.$, then $T(n)=\Theta\left(n^{\log b(a)}\right)$.
b) If $f(n)=\Theta\left(n^{\log _{b}(a)}\right)$, then $T(n)=\Theta\left(n^{\log _{b}(a)} \log (n)\right)$.
c) If $f(n)=\Omega\left(n^{\log _{b}(a)+\varepsilon}\right)$ and $f(n)$ is regular, then $T(n)$ $=\Theta(f(n))$
[$f(n)$ regular iff eventually $a f(n / b)<=c f(n)$ for some constant c<1]

Excuse me, what did it say???

Essentially, the Master theorem compares the function $f(n)$
with the function $g(n)=n^{\operatorname{logb}_{b}(a)}$.
Roughly, the theorem says:
a) If $f(n) \ll g(n)$ then $T(n)=\Theta(g(n))$.
b) If $f(n) \approx g(n)$ then $T(n)=\Theta(g(n) \log (n))$.
c) If $f(n) \gg g(n)$ then $T(n)=\Theta(f(n))$.

Déjà vu: Master Theorem

Consider a recurrence of the form $T(n)=a T(n / b)+f(n)$
with $a>=1, b>1$, and $f(n)$ eventually positive.
a) If $f(n)=O\left(n^{\left.\log _{b}(a)-\varepsilon\right)}\right.$, then $T(n)=\Theta\left(n^{\log _{b}(a)}\right)$.
b) If $f(n)=\Theta\left(n^{\log _{b}(a)}\right)$, then $T(n)=\Theta\left(n^{\log _{b}(a)} \log (n)\right)$.
c) If $f(n)=\Omega\left(n^{\log _{b}(a)+\varepsilon}\right)$ and $f(n)$ is regular, then $T(n)$ $=\Theta(f(n))$
[$f(n)$ regular iff eventually $a f(n / b)<c f(n)$ for some constant $c<1]$

Nothing is perfect...

The Master theorem does not cover all possible cases. For example, if

$$
f(n)=\Theta\left(n^{\log b(a)} \log n\right),
$$

then we lie between cases 2) and 3), but the theorem does not apply.
There exist better versions of the Master theorem that cover more cases, but these are even harder to memorize.

Idea of the Proof

Let us iteratively substitute the recurrence:

$$
\begin{aligned}
T(n) & =a T(n / b)+f(n) \\
& \left.=a\left(a T\left(n / b^{2}\right)\right)+f(n / b)\right)+b n \\
& =a^{2} T\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =a^{3} T\left(n / b^{3}\right)+a^{2} f\left(n / b^{2}\right)+a f(n / b)+f(n) \\
& =\ldots \\
& =a^{\log _{b} n} T(1)+\sum_{i=0}^{\left(\log _{b} n\right)-1} a^{i} f\left(n / b^{i}\right) \\
& =n^{\log _{b} a} T(1)+\sum_{i=0}^{\left(\log _{b} n\right)-1} a^{i} f\left(n / b^{i}\right)
\end{aligned}
$$

Idea of the Proof

Thus, we obtained

$$
T(n)=n^{\log b(a)} T(1)+\sum a^{i} f\left(n / b^{i}\right)
$$

The proof proceeds by distinguishing three cases:

1) The first term in dominant: $f(n)=O\left(n^{\log b(a)-\varepsilon}\right)$
2) Each part of the summation is equally dominant: $f(n)$ $=\Theta\left(n^{\log _{b}(a)}\right)$
3) The summation can be bounded by a geometric series: $f(n)=\Omega\left(n^{\left.\left.\log _{b}(a)\right)_{\varepsilon}\right)}\right.$ and the regularity of f is key to make the argument work.

Further Divide and Conquer Examples

Additional D\&C Algorithms

binary search
divide sequence into two halves by comparing search key to midpoint
recursively search in one of the two halves
combine step is empty
quicksort
divide sequence into two parts by comparing pivot to each key
recursively sort the two parts
combine step is empty

Additional D\&C applications

computational geometry

- finding closest pair of points
finding convex hull
mathematical calculations
converting binary to decimal
integer multiplication
matrix multiplication
matrix inversion
Fast Fourier Transform

> Strassen's Matrix Multiplication

Matrix Multiplication

Consider two n by n matrices A and B

- Definition of $A \times B$ is n by n matrix C whose (i, j)th entry is computed like this:
- consider row i of A and column j of B
- multiply together the first entries of the rown and column, the second entries, etc.
then add up all the products
- Number of scalar operations (multiplies and adds) in straightforward algorithm is $O\left(n^{3}\right)$.
Can we do it faster?

Divide-and-Conquer

A			B		C	
A_{0}	A_{1}		B_{0}	B_{1}	$\mathrm{A}_{0} \times \mathrm{B}_{0}+\mathrm{A}_{1} \times \mathrm{B}_{2}$	$\mathrm{A}_{0} \times \mathrm{B}_{1}+\mathrm{A}_{1} \times$
A_{2}	A_{3}	\times	B_{2}	B_{3}	$\mathrm{A}_{2} \times \mathrm{B}_{0}+\mathrm{A}_{3} \times \mathrm{B}_{2}$	$A_{2} \times B_{1}+A_{3} \times$

- Divide matrices A and B into four submatrices each
- We have 8 smaller matrix multiplications and 4 additions. Is it faster?

Divide-and-Conquer

Let us investigate this recursive version of the matrix multiplication.

Since we divide A, B and C into 4 submatrices each, we can compute the resulting matrix C by

- 8 matrix multiplications on the submatrices of A and B,
plus $\Theta\left(n^{2}\right)$ scalar operations

Divide-and-Conquer

Running time of recursive version of straightfoward algorithm is
$T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$
$T(2)=\Theta(1)$
where $T(n)$ is running time on an $n \times n$ matrix
Master theorem gives us:

$$
T(n)=\Theta\left(n^{3}\right)
$$

Can we do fewer recursive calls (fewer multiplications of the $n / 2 \times n / 2$ submatrices)?

Strassen's Matrix Multiplication

Strassen's Matrix Multiplication

Strassen found a way to get all the required information with only 7 matrix multiplications, instead of 8.

Recurrence for new algorithm is

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Solving the Recurrence Relation

Applying the Master Theorem to

$$
T(n)=a T(n / b)+f(n)
$$

with $a=7, b=2$, and $f(n)=\Theta\left(n^{2}\right)$.

Since $f(n)=O\left(n^{\log b(a)-\varepsilon}\right)=O\left(n^{\log 2(7)-\varepsilon}\right)$, case a) applies and we get

$$
T(n)=\Theta\left(n^{\log _{b}(a)}\right)=\Theta\left(n^{\log _{2}(7)}\right)=O\left(n^{2.81}\right) .
$$

Discussion of Strassen's

Not always practical
constant factor is larger than for naïve method specially designed methods are better on sparse matrices
issues of numerical (in)stability

- recursion uses lots of space
- Not the fastest known method

Fastest known is $O\left(n^{2.376}\right)$
Best known lower bound is $\Omega\left(n^{2}\right)$

