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Divide and Conquer Paradigm

• An important general technique for 
designing algorithms:

• divide problem into subproblems
• recursively solve subproblems
• combine solutions to subproblems to get 

solution to original problem

• Use recurrences to analyze the 
running time of such algorithms



Mergesort



Example: Mergesort

• DIVIDE the input sequence in half
• RECURSIVELY sort the two halves

• basis of the recursion is sequence with 1 
key

• COMBINE the two sorted subsequences 
by merging them



Mergesort Example

1 32 42 5 66

2 64 5 1 2 63

5 2 64 1 3 62

5 2 64

2 5 64

1 3

1 3

62

62

5 62 4

5 62 14 3 62

1 3 62



Mergesort Animation

• http://ccl.northwestern.edu/netlogo/
models/run.cgi?MergeSort.862.378



Recurrence Relation for 

• Let T(n) be worst case time on a 
sequence of n keys

• If n = 1, then T(n) = Θ(1) (constant)
• If n > 1, then T(n) = 2 T(n/2) + Θ(n) 

• two subproblems of size n/2 each that are 
solved recursively

• Θ(n) time to do the merge



Recurrence Relations



How To Solve Recurrences

• Ad hoc method:  
• expand several times
• guess the pattern
• can verify with proof by induction

• Master theorem
• general formula that works if recurrence has the form 

T(n) = aT(n/b) + f(n)
• a is number of subproblems
• n/b is size of each subproblem
• f(n) is cost of non-recursive part



Master Theorem

Consider a recurrence of the form

 T(n) = a T(n/b) + f(n) 

with a>=1, b>1, and f(n) eventually positive.

a)If f(n) = O(nlogb(a)-ε), then T(n)=Θ(nlogb(a)). 

b)If  f(n) = Θ(nlogb(a) ), then T(n)=Θ(nlogb(a) log(n)). 

c)  If f(n) = Ω(nlogb(a)+ε) and f(n) is regular, then T(n)
=Θ(f(n))

[f(n)  regular iff eventually af(n/b)<= cf(n) for 
some constant c<1]



Excuse me, what did it say???

Essentially, the Master theorem 
compares the function f(n) 
with the function g(n)=nlogb(a).
Roughly, the theorem says: 
a)If f(n) << g(n) then T(n)=Θ(g(n)).
b)If f(n) ≈ g(n) then T(n)=Θ(g(n)log(n)).
c)If f(n) >> g(n) then T(n)=Θ(f(n)).



Déjà vu: Master Theorem

Consider a recurrence of the form

 T(n) = a T(n/b) + f(n) 

with a>=1, b>1, and f(n) eventually positive.

a)If f(n) = O(nlogb(a)-ε), then T(n)=Θ(nlogb(a)). 

b)If  f(n) = Θ(nlogb(a) ), then T(n)=Θ(nlogb(a) log(n)). 

c)  If f(n) = Ω(nlogb(a)+ε) and f(n) is regular, then T(n)
=Θ(f(n))

[f(n)  regular iff eventually af(n/b)<= cf(n) for 
some constant c<1]



Nothing is perfect…

The Master theorem does not cover all 
possible cases. For example, if 
 f(n) = Θ(nlogb(a) log n), 
then we lie between cases 2) and 3), but 
the theorem does not apply. 
There exist better versions of the 
Master theorem that cover more cases, 
but these are even harder to memorize. 



Idea of the Proof

Let us iteratively substitute the recurrence: 



Idea of the Proof

Thus, we obtained 
 T(n) = nlogb(a) T(1) + Σ ai f(n/bi)

The proof proceeds by distinguishing three cases: 
1) The first term in dominant: f(n) = O(nlogb(a)-ε)
2)Each part of the summation is equally dominant: f(n) 

= Θ(nlogb(a) )
3)The summation can be bounded by a geometric series: 

f(n) = Ω(nlogb(a)+ε) and the regularity of f is key to 
make the argument work. 



Further Divide and Conquer 
Examples



Additional D&C Algorithms

• binary search
• divide sequence into two halves by comparing search 

key to midpoint 
• recursively search in one of the two halves
• combine step is empty

• quicksort
• divide sequence into two parts by comparing pivot to 

each key
• recursively sort the two parts
• combine step is empty



Additional D&C applications

• computational geometry
• finding closest pair of points
• finding convex hull

• mathematical calculations
• converting binary to decimal
• integer multiplication
• matrix multiplication
• matrix inversion
• Fast Fourier Transform



Strassen’s Matrix Multiplication



Matrix Multiplication

• Consider two n by n matrices A and B
• Definition of AxB is n by n matrix C whose (i,j)-

th entry is computed like this:
• consider row i of A and column j of B
• multiply together the first entries of the rown and 

column, the second entries, etc.
• then add up all the products

• Number of scalar operations (multiplies and 
adds) in straightforward algorithm is O(n3).

• Can we do it faster?



Divide-and-Conquer

• Divide matrices A and B into four submatrices each
• We have 8 smaller matrix multiplications and 4 

additions. Is it faster? 

    A     ×      B     =             C
A0 A1

A2 A3

B0 B1

B2 B3

A0×B0+A1×B2 A0×B1+A1×

B3A2×B0+A3×B2 A2×B1+A3×

B3

× =



Divide-and-Conquer

Let us investigate this recursive version of the 
matrix multiplication. 

Since we divide A, B and C into 4 submatrices 
each, we can compute the resulting matrix C by 
•  8 matrix multiplications on the submatrices  
of A and B, 
• plus Θ(n2) scalar operations



Divide-and-Conquer

• Running time of recursive version of 
straightfoward algorithm is
• T(n) = 8T(n/2) + Θ(n2)
• T(2) = Θ(1)
where T(n) is running time on an n x n matrix

• Master theorem gives us:
  T(n) = Θ(n3)
• Can we do fewer recursive calls (fewer 

multiplications of the n/2 x n/2 submatrices)?



Strassen’s Matrix Multiplication

P1 = (A11+ A22)(B11+B22) 
P2 = (A21 + A22) * B11 
P3 = A11 * (B12 - B22) 
P4 = A22 * (B21 - B11) 
P5 = (A11 + A12) * B22 
P6 = (A21 - A11) * (B11 + B12) 
P7 = (A12 - A22) * (B21 + B22) 

C11 = P1 + P4 - P5 + P7
C12 = P3 + P5 
C21 = P2 + P4 
C22 = P1 + P3 - P2 + P6 

    A     ×      B     =             C
A0 A1

A2 A3

B0 B1

B2 B3

C11  C12

C21 C22
× =



Strassen's Matrix Multiplication

• Strassen found a way to get all the 
required information with only 7 matrix 
multiplications, instead of 8.

• Recurrence for new algorithm is
• T(n) = 7T(n/2) + Θ(n2)



Solving the Recurrence Relation

Applying the Master Theorem to
 T(n) = a T(n/b) + f(n)
with a=7, b=2, and f(n)=Θ(n2). 

Since f(n) = O(nlogb(a)-ε) = O(nlog2(7)-ε), 
case a) applies and we get 
 T(n)= Θ(nlogb(a)) = Θ(nlog2(7)) = O(n2.81). 



Discussion of Strassen's 

• Not always practical
• constant factor is larger than for naïve method
• specially designed methods are better on sparse 

matrices
• issues of numerical (in)stability
• recursion uses lots of space

• Not the fastest known method
• Fastest known is O(n2.376)
• Best known lower bound is Ω(n2)


