Amortized Analysis

Andreas Klappenecker

[partially based on the slides of Prof. Welch]
Analyzing Calls to a Data

• Some algorithms involve repeated calls to one or more data structures.

• When analyzing the running time of an algorithm, one needs to sum up the time spent in all the calls to the data structure.

• Problem: If different calls take different times, how can we accurately calculate the total time?
Max-Heap

A max-heap is an nearly complete binary tree
(i.e., all levels except the deepest level are completely filled and
the last level is filled from the left)
satisfying the heap property: if B is a child of a node A,
then key[A] >= key[B].

[Picture courtesy of Wikipedia.]
Heap Implementation

We can store a heap in an array:

If the array is indexed a[1..n],
then a[i] has children a[2i] and a[2i+1]:
a[1] has children a[2], a[3],
a[2] has children a[4], a[5],
a[3] has children a[6], a[7], ...
Adding an Element to a Heap

An element can be added to the heap as follows:

1. Add the element on the bottom level of the heap.
2. Compare the added element with its parent; if they are in the correct order, stop.
3. If not, swap the element with its parent and return to the previous step.
Adding an Element: Example

Adding 15 to a max-heap. Insert at position x, compare with parent, swap, compare with parent, swap.

What is the time-complexity of adding an element to a heap with n elements?
Constructing a Heap

Let us form a heap of n elements from scratch.

First idea:
• Use n times add to form the heap.
• Each addition to the heap operates on a heap with at most n elements.
• Adding to a heap with n elements takes $O(\log n)$ time.
• Total time spent doing the n insertions is $O(n \log n)$ time
Constructing a Heap (2)

Two questions arise:

- Does our analysis overestimate the time?
 The different insertions take different amounts of time, and many are on smaller heaps. (⇒ leads to amortized analysis)

- Is this the optimal way to create a heap?
 Perhaps simply adding \(n \) times is not the best way to form a heap.
Deleting the Maximal Element

Deleting the maximal element from a max-heap starts by replacing it with the last element from the lowest level. Then restore the heap property (using Max-Heapify) by swapping with largest child, and repeat same process on the next level, etc.

![Diagram of Max-Heap before and after deleting the max element]
Second idea:
Place elements in an array, interpret as a binary tree. Look at subtrees at height h (measured from lowest level). If these trees have been heapified, then subtrees at height $h+1$ can be heapified by sending their roots down.

Initially, the trees at height 0 are all heapified.
Constructing a Heap (4)

Array of length n. Number of nodes at height h is at most \(\text{floor}(n/2^{h+1}) \). Cost to heapify a tree at height \(h+1 \) if all subtrees have been heapified: \(O(h) \) swaps. Total cost:

\[
\sum_{h=0}^{[\log_2 n]} \frac{n}{2^{h+1}} O(h) = O\left(n \sum_{h=0}^{[\log_2 n]} \frac{h}{2^h} \right) \\
\leq O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h} \right) \\
= O(n)
\]
Amortized Analysis
Amortized Analysis

• Purpose is to accurately compute the total time spent in executing a sequence of operations on a data structure
• Three different approaches:
 • aggregate method: brute force
 • accounting method: assign costs to each operation so that it is easy to sum them up while still ensuring that the result is accurate
 • potential method: a more sophisticated version of the accounting method (omitted here)
Running Example #1:

- Operations are:
 - Push(S,x)
 - Pop(S)
 - Multipop(S,k) - pop the top k elements

- Implement with either array or linked list
 - time for Push is O(1)
 - time for Pop is O(1)
 - time for Multipop is O(min(|S|,k))
Running Example #2:

- **Operation:**
 - increment(A) - add 1 (initially 0)

- **Implementation:**
 - k-element binary array
 - use grade school ripple-carry algorithm
Aggregate Method
Aggregate Method

- Show that a sequence of n operations takes $T(n)$ time
- We can then say that the amortized cost per operation is $T(n)/n$
- Makes no distinction between operation types
Augmented Stack:

- In a sequence of n operations, the stack never holds more than n elements.
- Thus, the cost of a multipop is $O(n)$.
- Therefore, the worst-case cost of any sequence of n operations is $O(n^2)$.
- But this is an over-estimate!
Aggregate Method for

- **Key idea:** total number of pops (or multipops) in the entire sequence of operations is at most the total number of pushes

- Suppose that the maximum number of Push operations in the sequence is n.
- So time for entire sequence is $O(n)$.
- Amortized cost per operation: $O(n)/n = O(1)$.
Aggregate Method for k-Bit

- Worst-case time for an increment is $O(k)$. This occurs when all k bits are flipped.
- But in a sequence of n operations, not all of them will cause all k bits to flip:
 - bit 0 flips with every increment
 - bit 1 flips with every 2nd increment
 - bit 2 flips with every 4th increment ...
 - bit k flips with every 2^k-th increment
Aggregate Method for k-Bit

- Total number of bit flips in n increment operations is
 - $n + n/2 + n/4 + \ldots + n/2^k < n(1/(1-1/2)) = 2n$
- So total cost of the sequence is $O(n)$.
- Amortized cost per operation is $O(n)/n = O(1)$.
Accounting Method
Accounting Method

- Assign a cost, called the "amortized cost", to each operation
- Assignment must ensure that the sum of all the amortized costs in a sequence is at least the sum of all the actual costs
 - remember, we want an upper bound on the total cost of the sequence
Accounting Method

- For each operation in the sequence:
 - if amortized cost > actual cost then store extra as a credit with an object in the data structure
 - if amortized cost < actual cost then use the stored credits to make up the difference
- Never allowed to go into the red! Must have enough credit saved up to pay for
Accounting Method vs.

- **Aggregate method:**
 - first analyze entire sequence
 - then calculate amortized cost per operation

- **Accounting method:**
 - first assign amortized cost per operation
 - check that they are valid (never go into the red)
Accounting Method for

- Assign these amortized costs:
 - Push - 2
 - Pop - 0
 - Multipop - 0
- For Push, actual cost is 1. Store the extra 1 as a credit, associated with the pushed element.
- Pay for each popped element (either from
Accounting Method for

- There is always enough credit to pay for each operation (never go into red).
- Each amortized cost is $O(1)$
- So cost of entire sequence of n operations is $O(n)$.
Accounting Method for k-Bit

- Assign amortized cost for increment operation to be 2.
- Actual cost is the number of bits flipped:
 - a series of 1's are reset to 0
 - then a 0 is set to 1
- Idea: 1 is used to pay for flipping a 0 to 1. The extra 1 is stored with the
Accounting Method for k-Bit
Accounting Method for k-Bit

- All changes from 1 to 0 are paid for with previously stored credit (never go into red)
- Amortized time per operation is $O(1)$
- Total cost of sequence is $O(n)$
Conclusions

Amortized Analysis allows one to estimate the cost of a sequence of operations on data structures.

The method is typically more accurate than worst case analysis when the data structure is dynamically changing.