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Prelude: Informal Discussion

(Incidentally, we will never get 
very formal in this course)
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Polynomial Time Algorithms

• Most of the algorithms we have seen so far 
run in time that is upper bounded by a 
polynomial in the input size
• sorting:  O(n2), O(n log n), …

• matrix multiplication:  O(n3), O(n log
2

7)

• graph algorithms:  O(V+E), O(E log V), …

• In fact, the running time of these algorithms 
are bounded by small polynomials.
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Categorization of Problems

We will consider a computational problem 
tractable if and only if it can be solved in 
polynomial time. 
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Decision Problems and the class P 

A computational problem with yes/no 
answer is called a decision problem. 

We shall denote by P the class of all 
decision problems that are solvable in 
polynomial time. 
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Why Polynomial Time? 

It is convenient to define decision problems to be 
tractable if they belong to the class P, since
- the class P is closed under composition. 
- the class P becomes more or less independent of the 
computational model. 
[ Typically, computational models can be transformed 
into each other by polynomial time reductions. ] 

Of course, no one will consider a problem requiring an  
Ω(n100) algorithm as efficiently solvable. However, it 
seems that most problems in P that are interesting in 
practice can be solved fairly efficiently.  
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The Class NP

We shall denote by NP the class of all 
decision problems for which a candidate 
solution can be verified in polynomial 
time.

[We may not be able to find the solution, but 
we can verify the solution in polynomial time if 
someone is so kind to give us the solution.]



Sudoku

• The problem is given as an n2 x n2 array which 
is divided into blocks of n x n squares. 

• Some array entries are filled with an integer 
in the range [1.. n2]. 

• The goal is to complete the array such that 
each row, column, and block contains each 
integer from [1..n2].  

8



Sudoku

• Finding the solution might be difficult, but 
verifying the solution is easy. 

• The Sudoku decision problem is whether a 
given Sudoku problem has a solution.

9
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The Class NP

The decision problems in NP can be solved on a 
nondeterministic Turing machine in polynomial 
time. Thus, NP stands for nondeterministic 
polynomial time. 

Obviously, the class P is a subset of NP. 

NP does not stand for not-P. Why? 
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Verifying a Candidate Solution

• Difference between solving a problem 
and verifying a candidate solution:

• Solving a problem:  is there a path in 
graph G from node u to node v with at 
most k edges?

• Verifying a candidate solution:  is v0, v1, 
…, vl a path in graph G from node u to 
node v with at most k edges?
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Verifying a Candidate Solution

• A Hamiltonian cycle in an undirected 
graph is a cycle that visits every node 
exactly once.

• Solving a problem:  Is there a 
Hamiltonian cycle in graph G?

• Verifying a candidate solution:  Is v0, v1, 
…, vl a Hamiltonian cycle of graph G?
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Verifying a Candidate Solution 

• Intuitively it seems much harder (more 
time consuming) in some cases to solve a 
problem from scratch than to verify 
that a candidate solution actually solves 
the problem.

• If there are many candidate solutions 
to check, then even if each individual 
one is quick to check, overall it can take 
a long time



11

Verifying a Candidate Solution

• Many practical problems in computer 
science, math, operations research, 
engineering, etc. are poly time 
verifiable but have no known poly time 
algorithm
• Wikipedia lists problems in computational 

geometry, graph theory, network design, 
scheduling, databases, program 
optimization and more



12

P versus NP 
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P vs. NP

• Although poly-time verifiability seems 
like a weaker condition than poly time 
solvability, no one has been able to 
prove that it is weaker (i.e., describes a 
larger class of problems)

• So it is unknown whether P = NP.
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P and NP

all problems

P

NP
or

all problems

P=NP
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NP-Complete Problems

• NP-complete problems is class of 
"hardest" problems in NP.

• If an NP-complete problem can be 
solved in polynomial time, then all 
problems in NP can be, and thus P = NP.
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Possible Worlds

all problems

P

NP
or

all problems

P=NP=NPCNPC

NPC = NP-complete



17

P = NP Question

• Open question since about 1970
• Great theoretical interest
• Great practical importance:

• If your problem is NP-complete, then don't 
waste time looking for an efficient 
algorithm

• Instead look for efficient approximations, 
heuristics, etc.
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Decision Problems and 
Formal Languages 
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NP-Completeness Theory

As we have already mentioned, the theory is 
based considering decision problems. 

Example: 
-Does there exist a path from node u to node v 
in graph G with at most k edges. 
- Instead of:  What is the length of the 
shortest path from u to v?  Or even:  What is 
the shortest path from u to v?
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Decision Problems

Why focus on decision problems?
• Solving the general problem is at least as 

hard as solving the decision problem version
• For many natural problems, we only need 

polynomial additional time to solve the general 
problem if we already have a solution to the 
decision problem

• We can use "language acceptance" notions
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Languages and Decision 

• Language:  A set of strings over some 
alphabet

• Decision problem:  A decision problem 
can be viewed as the formal language 
consisting of exactly those strings that 
encode YES instances of the problem

• What do we mean by encoding Yes 
instances?
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Encodings

• Every abstract problem has to be 
represented somehow for the computer to 
work on it - ultimately a binary 
representation

• Consider the problem:  "Is x prime?"
• Each input is a positive integer
• Common way to encode an integer is in binary
• Primes decision problem is {10,11,101,111,…} 

since 10 encodes 2, 11 encodes 3, 101 encodes 
5, 111 encodes 7, etc.
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More Complicated Encodings

• Suggest an encoding for the shortest 
path decision problem

• Represent G, u, v and k somehow in 
binary

• Decision problem is all encodings of a 
graph G, two nodes u and v, and an 
integer k such that G really does have a 
path from u to v of length at most k 
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Definition of P

• P is the set of all decision problems 
that can be computed in time O(nk), 
where n is the length of the input string 
and k is a constant

• "Computed" means there is an algorithm 
that correctly returns YES or NO 
whether the input string is in the 
language
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Example of a Decision Problem 

• "Given a graph G, nodes u and v, and integer k, 
is there a path in G from u to v with at most k 
edges?"

• Why is this a decision problem?  
• Has YES/NO answers

• We are glossing over the particular encoding 
(tedious but straightforward)

• Why is this problem in P?
• Do BFS on G in polynomial time
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Definition of NP

• NP = set of all decision problems for 
which a candidate solution can be 
verified in polynomial time

• Does *not* stand for "not polynomial"
• in fact P is a subset of NP

• NP stands for "nondeterministic 
polynomial"
• more info on this in CPSC 433
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Example of a Decision Problem 

• Decision problem: Is there a path in G 
from u to v of length at most k?

• Candidate solution:  a sequence of nodes 
v0, v1, …, vl 

• To verify:
• check if l ≤ k
• check if v0 = u and vl = v

• check if each (vi,vi+1) is an edge of G
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Example of a Decision Problem 

• Decision problem: Does G have a Hamiltonian 
cycle?

• Candidate solution:  a sequence of nodes v0, 
v1, …, vl 

• To verify:
• check if l = number of nodes in G
• check if v0 = vl and there are no repeats in v0, 

v1, …, vl-1 

• check if each (vi,vi+1) is an edge of G
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Going From Verifying to Solving

• for each candidate solution do
• verify if the candidate really works
• if so then return YES

• return NO

Difficult to use in practice, though, if 
number of candidate solutions is large
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Number of Candidate Solutions

• "Is there a path from u to v in G of 
length at most k?":  more than n! 
candidate solutions where n is the 
number of nodes in G

• "Does G have a Hamiltonian cycle?":  n! 
candidate solutions
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Trying to be Smarter

• For the length-k path problem, we can 
do better than the brute force 
approach of trying all possible 
sequences of nodes
• use BFS

• For the Hamiltonian cycle problem, no 
one knows a way that is significantly 
faster than trying all possibilities
• but no one has been able to prove that 
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Polynomial Reduction
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Polynomial Reduction

A polynomial reduction (or transformation) 
from language L1 to language L2 is a function f 
from strings over L1's alphabet to strings over 
L2's alphabet such that
(1) f is computable in polynomial time
(2) for all x, x is in L1 if and only if f(x) is in L2
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Polynomial Reduction

all strings over L1's 
alphabet

L1

all strings over L2's 
alphabet

L2

f
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Polynomial Reduction

• YES instances map to YES instances
• NO instances map to NO instances
• computable in polynomial time
• Notation:  L1 ≤p L2

• [Think:  L2 is at least as hard as L1]
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Polynomial Reduction Theorem

Theorem: If L1 ≤p L2 and L2 is in P, 

                then L1 is in P.

Proof:  Let A2 be a polynomial time algorithm 
for L2. Here is a polynomial time algorithm A1 
for L1.

•input: x
•compute f(x)

•run A2 on input f(x)

|x| = n
takes p(n) time
takes q(p(n)) time
takes O(1) time
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Implications

• Suppose that L1 ≤p L2 
• If there is a polynomial time algorithm 

for L2, then there is a polynomial time 
algorithm for L1.

• If there is no polynomial time algorithm 
for L1, then there is no polynomial time 
algorithm for L2.

• Note the asymmetry!
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HC ≤p TSP
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Traveling Salesman Problem

• Given a set of cities, distances between all pairs of 
cities, and a bound B, does there exist a tour 
(sequence of cities to visit) that returns to the start 
and requires at most distance B to be traveled?          

• TSP is in NP:
• given a candidate solution (a tour), add up all the 

distances and check if total is at most B
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Example of Polynomial 

• Theorem:  HC (Hamiltonian circuit problem) 
≤p TSP.

• Proof:  Find a way to transform ("reduce") 
any HC input (G) into a TSP input (cities, 
distances, B) such that 
• the transformation takes polynomial time
• the HC input is a YES instance (G has a HC) if 

and only if the TSP input constructed is a YES 
instance (has a tour that meets the bound).



41

The Reduction

• Given undirected graph G = (V,E) with m 
nodes, construct a TSP input like this:
• set of m cities, labeled with names of nodes in V
• distance between u and v is 1 if (u,v) is in E, and is 

2 otherwise
• bound B = m

• Why can this TSP input be constructed in 
time polynomial in the size of G?
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Figure for Reduction

1 2

4 3

dist(1,2) = 1
dist(1,3) = 1
dist(1,4) = 1
dist(2,3) = 1
dist(2,4) = 2
dist(3,4) = 1
bound = 4HC input

TSP inputHC: 1,2,3,4,1
tour w/ distance 4: 1,2,3,4,1
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Figure for Reduction

1 2

4 3

dist(1,2) = 1
dist(1,3) = 1
dist(1,4) = 2
dist(2,3) = 1
dist(2,4) = 2
dist(3,4) = 1
bound = 4HC input

TSP inputno HC
no tour w/ distance at most 4
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Correctness of the Reduction

• Check that input G is in HC (has a 
Hamiltonian cycle) if and only if the 
input constructed is in TSP (has a tour 
of length at most m).

• => Suppose G has a Hamiltonian cycle v1, 
v2, …, vm, v1.  
• Then in the TSP input, v1, v2, …, vm, v1 is a 

tour (visits every city once and returns to 
the start) and its distance is 1⋅m = B.
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Correctness of the Reduction

• <=: Suppose the TSP input constructed 
has a tour of total length at most m. 
• Since all distances are either 1 or 2, and 

there are m of them in the tour, all 
distances in the tour must be 1.

• Thus each consecutive pair of cities in the 
tour correspond to an edge in G.

• Thus the tour corresponds to a Hamiltonian 
cycle in G.
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Implications:

• If there is a polynomial time algorithm 
for TSP, then there is a polynomial time 
algorithm for HC.

• If there is no polynomial time algorithm 
for HC, then there is no polynomial time 
algorithm TSP.

• Note the asymmetry!
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Transitivity of Polynomial 

• Theorem: If L1 ≤p L2 and L2 ≤p L3, 

 then L1 ≤p L3.

• Proof:

L1 L2 L3

f g

g(f)
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NP-Completeness
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Definition of NP-Complete

L is NP-complete if and only if 
(1)  L is in NP and
(2) for all L' in NP, L' ≤p L.

In other words, L is at least as hard as 
every language in NP. 
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Implication of NP-Completeness

Theorem:  Suppose L is NP-complete.
(a) If there is a poly time algorithm for L, 

then P = NP.
(b) If there is no poly time algorithm for 

L, then there is no poly time algorithm 
for any NP-complete language.
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Showing NP-Completeness

• How to show that a problem (language) L is 
NP-complete?

• Direct approach:  Show
(1) L is in NP
(2) every other language in NP is polynomially 

reducible to L.

• Better approach: once we know some NP-
complete problems, we can use reduction to 
show other problems are also NP-complete. 
How? 
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Showing NP-Completeness with 

To show L is NP-complete:
• (1) Show L is in NP.
• (2.a) Choose an appropriate known NP-

complete language L'.

• (2.b) Show L' ≤p L.

Why does this work?  By transitivity:  Since 
every language L'' in NP is polynomially 
reducible to L', L'' is also polynomially 
reducible to L.
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The First NP-Complete Problem: 
Satisfiability - SAT
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First NP-Complete Problem

How do we get started?  Need to show via 
brute force that some problem is NP-complete.
• Logic problem "satisfiability" (or SAT).
• Given a boolean expression (collection of 
boolean variables connected with ANDs and 
ORs), is it satisfiable, i.e., is there a way to 
assign truth values to the variables so that the 
expression evaluates to TRUE?
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Conjunctive Normal Form (CNF)

• boolean variables:  take on values T or F
• Ex: x, y

• literal:  variable or negation of a variable
• Ex: x, x

• clause:  disjunction (OR) of several literals
• Ex: x ∨ y ∨ z ∨ w 

• CNF formula: conjunction (AND) of several 
clauses
• Ex: (x ∨ y) ∧ (z ∨ w ∨ x)



56

Satisfiable CNF Formula

• Is (x ∨ ¬y) satisfiable?
• yes:  set x = T and y = F to get overall T

• Is x ∧ ¬x satisfiable?
• no:  both x = T and x = F result in overall F

• Is (x ∨ y) ∧ (z ∨ w ∨ x) satisfiable?
• yes: x = T, y = T, z = F, w = T result in overall T

• If formula has n variables, then there are 
2n different truth assignments. 
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Definition of SAT

• SAT = all (and only) strings that encode 
satisfiable CNF formulas.
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SAT is NP-Complete

• Cook's Theorem:  SAT is NP-complete.
• Proof ideas:
• (1) SAT is in NP: Given a candidate solution (a 

truth assignment) for a CNF formula, verify 
in polynomial time (by plugging in the truth 
values and evaluating the expression) whether 
it satisfies the formula (makes it true).
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SAT is NP-Complete

• How to show that every language in NP is 
polynomially reducible to SAT?

• Key idea:  the common thread among all the 
languages in NP is that each one is solved by 
some nondeterministic Turing machine (a 
formal model of computation) in polynomial 
time.

• Given a description of a poly time TM, 
construct in poly time, a CNF formula that 
simulates the computation of the TM.
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Proving NP-Completeness By 

To show L is NP-complete:
(1) Show L is in NP.
(2.a) Choose an appropriate known NP-

complete language L'.
(2.b) Show L' ≤p L:  Describe an algorithm to 

compute a function f such that
 f is poly time
 f maps inputs for L' to inputs for L s.t. x is in 

L' if and only if f(x) is in L 
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Get the Direction Right!

• We want to show that L is at least as hard 
(time-consuming) as L'.

• So if we have an algorithm A for L, then we 
can solve L' with polynomial overhead

• Algorithm for L':
• input: x
• compute y = f(x)
• run algorithm A for L on y
• return whatever A returns

L' ≤p L

known unknown
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3SAT
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Definition of 3SAT

• 3SAT is a special case of SAT:  each clause 
contains exactly 3 literals.

• Is 3SAT in NP?  
• Yes, because SAT is in NP.

• Is 3SAT NP-complete?
• Not obvious.  It has a more regular structure, which 

can perhaps be exploited to get an efficient algorithm
• In fact, 2SAT does have a polynomial time algorithm
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Showing 3SAT is NP-Complete 

(1) To show 3SAT is in NP, use same algorithm as 
for SAT to verify a candidate solution (truth 
assignment)

(2.a) Choose SAT as known NP-complete problem.
(2.b) Describe a reduction from 
 SAT inputs to 3SAT inputs

 computable in poly time
 SAT input is satisfiable iff constructed 3SAT 

input is satisfiable
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Reduction from SAT to 3SAT
• We're given an arbitrary CNF formula C = c1∧ c2 
∧ … ∧ cm over set of variables U
• each ci is a clause (disjunction of literals)

• We will replace each clause ci with a set of 
clauses Ci', and may use some extra variables Ui' 
just for this clause

• Each clause in Ci' will have exactly 3 literals

• Transformed input will be conjunction of all the 
clauses in all the Ci'

• New clauses are carefully chosen… 
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Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 1:  k = 1.  
• Use extra variables yi

1 and yi
2.  

• Replace ci with 4 clauses:

 (z1 ∨ yi
1 ∨ yi

2)

 (z1 ∨¬ yi
1 ∨ yi

2)

 (z1 ∨ yi
1 ∨ ¬yi

2)

 (z1 ∨ ¬yi
1 ∨ ¬yi

2)
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Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 2:  k = 2.  
• Use extra variable yi

1.  

• Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ ¬yi
1)

 (z1 ∨ z2 ∨ yi
1)
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Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 3:  k = 3.  
• No extra variables are needed.  
• Keep ci:

 (z1 ∨ z2 ∨ z3)
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Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 4:  k > 3.  
• Use extra variables yi

1, …, yi
k-3.  

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)  . . .

 (¬yi
1 ∨ z3 ∨ yi

2)  (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3)  (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . .     (¬yi
k-3 ∨ zk-1 ∨ zk)
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Correctness of Reduction

• Show that CNF formula C is satisfiable iff 
the 3-CNF formula C' constructed is 
satisfiable.

• =>: Suppose C is satisfiable.  Come up with 
a satisfying truth assignment for C'.

• For variables in U, use same truth 
assignments as for C.

• How to assign T/F to the new variables?
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Truth Assignment for New 
Variables

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 1:  k = 1.  
• Use extra variables yi

1 and yi
2.  

• Replace ci with 4 clauses:

 (z1 ∨ yi
1 ∨ yi

2)

 (z1 ∨ ¬yi
1 ∨ yi

2)

 (z1 ∨ yi
1 ∨ ¬yi

2)

 (z1 ∨ ¬yi
1 ∨ ¬yi

2)

Since z1 is true, it does 
not
matter how we assign 
yi

1 and yi
2
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Truth Assignment for New 
Variables

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 2:  k = 2.  
• Use extra variable yi

1.  

• Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ ¬yi
1)

 (z1 ∨ z2 ∨ yi
1)

 

Since either z1 or z2 is true, 
it does not matter how we 
assign yi

1
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Truth Assignment for New 
Variables

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 3:  k = 3.  
• No extra variables are needed.  
• Keep ci:

 (z1 ∨ z2 ∨ z3)

 

No new variables.
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Truth Assignment for New 
Variables

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 4:  k > 3.  
• Use extra variables yi

1, …, yi
k-3.  

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)  . . .

 (¬yi
1 ∨ z3 ∨ yi

2)  (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3)  (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . .     (yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is
z1 or z2, set all yi's 
to false:  then all 
later clauses have 
a true literal
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Truth Assignment for New 
Variables

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 4:  k > 3.  
• Use extra variables yi

1, …, yi
k-3.  

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)  . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . .    (¬yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is
zk-1 or zk, set all yi's 
to true:  then all 
earlier clauses 
have a true literal
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Truth Assignment for New 
Variables
Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 4:  k > 3.  
• Use extra variables yi

1, …, yi
k-3.  

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)  . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . .    (¬yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is
in between, set all 
earlier yi's to true
and all later yi's to 
false
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Correctness of Reduction

• <=: Suppose the newly constructed 3SAT 
formula C' is satisfiable.  We must show that 
the original SAT formula C is also satisfiable.

• Use the same satisfying truth assignment for 
C as for C' (ignoring new variables).

• Show each original clause has at least one 
true literal in it.
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Original Clause Has a True 
Literal

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 1:  k = 1.  
• Use extra variables yi

1 and yi
2.  

• Replace ci with 4 clauses:

 (z1 ∨ yi
1 ∨ yi

2)

 (z1 ∨ ¬yi
1 ∨ yi

2)

 (z1 ∨ yi
1 ∨ ¬yi

2)

 (z1 ∨ ¬yi
1 ∨ ¬yi

2)

For every assignment of 
yi

1 and yi
2 , in order for all

4 clauses to have a true literal,
z1 must be true.
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Original Clause Has a True 
Literal

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 2:  k = 2.  
• Use extra variable yi

1.  

• Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ yi
1)

 (z1 ∨ z2 ∨ ¬yi
1)

 

For either assignment of 
yi

1, in order for both clauses 
to have a true literal,
z1 or z2 must be true.
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Original Clause Has a True 

Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 3:  k = 3.  
• No extra variables are needed.  
• Keep ci:

 (z1 ∨ z2 ∨ z3)

 

No new variables.
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Original Clause Has a True 
Literal
Let ci = z1∨ z2 ∨ … ∨ zk 

• Case 4:  k > 3.  
• Use extra variables yi

1, …, yi
k-3.  

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1)  . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . .    (¬yi
k-3 ∨ zk-1 ∨ zk)

Suppose in contra-
diction all zi's are
false. Then yi1 must
be true, yi2 must be
true,... Impossible!
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Why is Reduction Poly Time?

• The running time of the reduction (the 
algorithm to compute the 3SAT formula 
C', given the SAT formula C) is 
proportional to the size of C'

• rules for constructing C' are simple to 
calculate
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Size of New Formula

• original clause with 1 literal becomes 4 clauses with 
3 literals each

• original clause with 2 literals becomes 2 clauses 
with 3 literals each

• original clause with 3 literals becomes 1 clause with 
3 literals

• original clause with k > 3 literals becomes k-2 
clauses with 3 literals each

• So new formula is only a constant factor larger 
than the original formula
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Vertex Cover
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Vertex Cover of a Graph

• Given undirected graph G = (V,E)
• A subset V' of V is a vertex cover if every 

edge in E has at least one endpoint in V'
• Easy to find a big vertex cover:  let V' be 

all the nodes
• What about finding a small vertex cover?
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Vertex Cover Example

vertex cover
of size 3

vertex cover
of size 2
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Vertex Cover Decision Problem

• VC:  Given a graph G and an integer K, does 
G have a vertex cover of size at most K?

• Theorem:  VC is NP-complete.
• Proof:  First, show VC is in NP:  
• Given a candidate solution (a subset V' of 

the nodes), check in polynomial time if |V'| ≤  
K and if every edge has at least one 
endpoint in V'.
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VC is NP-Complete

• Now show some known NP-complete problem 
is polynomially reducible to VC.

• So far, we have two options, SAT and 3SAT.
• Let's try 3SAT:  since inputs to 3SAT have a 

more regular structure than inputs to SAT, 
maybe it will be easier to define a reduction 
from 3CNF formulas to graphs.
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Reducing 3SAT to VC

• Let C = c1∧…∧cm be any 3SAT input over set over 
variables U = {u1,…,un}.

• Construct a graph G like this:
• two nodes for each variable, ui and ¬ui, with an edge 

between them ("literal" nodes)
• three nodes for each clause cj, "placeholders" for the 

three literals in the clause:  a1
j, a2

j, a3
j, with edges making 

a triangle
• edges connecting each placeholder node in a triangle to 

the corresponding literal node

• Set K to be n + 2m.
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Example of Reduction

• 3SAT input has variables u1, u2, u3, u4 and 
clauses (u1∨¬u3∨¬u4)∧(¬u1∨u2∨¬u4).

• K = 4 + 2*2 = 8
u1

¬u1 u2
¬u2 ¬u3u3

¬u4u4

a2
1

a3
1a1

1

a2
2

a3
2a1

2



96

Correctness of Reduction

• Suppose the 3SAT input (with m clauses over 
n variables) has a satisfying truth assignment.

• Show there is a VC of G of size n + 2m:
• pick the node in each pair corresponding to the 

true literal w.r.t. the satisfying truth assignment
• pick two of the nodes in each triangle such that 

the excluded node is connected to a true literal
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Example of Reduction

u1
¬u1 u2

¬u2 ¬u3u3
¬u4u4

a2
1

a3
1a1

1

a2
2

a3
2a1

2

(u1∨¬u3∨¬u4)∧(¬u1∨u2∨¬u4)
u1= T
u2= F
u3= T
u4= F
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Correctness of Reduction

• Since one from each pair is chosen, the edges 
in the pairs are covered.

• Since two from each triangle are chosen, the 
edges in the triangles are covered.

• For edges between triangles and pairs:
• edge to a true literal is covered by pair choice
• edges to false literals are covered by triangle 

choices
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Correctness of Reduction

• Suppose G has a vertex cover V' of size at 
most K.

• To cover the edges in the pairs, V' must 
contain at least one node in each pair

• To cover the edges in the triangles, V' must 
contain at least two nodes in each triangle

• Since there are n pairs and m triangles, and 
since K = n + 2m, V' contains exactly one from 
each pair and two from each triangle.
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Correctness of Reduction

• Use choice of nodes in pairs to define a truth 
assignment:
• if node ui is chosen, then set variable ui to T

• if node ¬ui is chosen, then set variable ui to F

• Why is this a satisfying truth assignment?
• Seeking a contradiction, suppose that some 

clause has no true literal….
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Correctness of Reduction

u1
¬u1 ¬u4u4u2

¬u2

a2
j

a3
ja1

j

In order to cover the triangle-to-literal edges, all three
nodes in this triangle must be chosen, contradicting
fact that only two can be chosen (since size is n + 2m).
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Running Time of the Reduction

• Show graph constructed is not too much 
bigger than the input 3SAT formula:
• number of nodes is 2n + 3m
• number of edges is n + 3m + 3m

• Size of VC input is polynomial in size of 3SAT 
input, and rules for constructing the VC input 
are quick to calculate, so running time is 
polynomial.
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Further Examples
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Some NP-Complete Problems

• SAT 
• 3-SAT
• VC
• TSP
• CLIQUE (does G contain a completely connected 

subgraph of size at least K?)
• HC (does G have a Hamiltonian cycle?)
• SUBSET-SUM (given a set S of natural numbers 

and integer t, is there a subset of S that sum to 
t?)
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Relationship Between Some NP-

• Textbook shows NP-completeness using this tree 
of reductions: CIRCUIT-SAT

SAT

3-SAT

CLIQUE SUBSET-SUM

VC

HC

TSP

We've seen
the orange
reductions
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Clique
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CLIQUE vs. VC

• The complement of graph G = (V,E) is 
the graph Gc = (V,Ec), where Ec consists 
of all the edges that are missing in G.

u

z

y

v

x

w w

u

z

y

v

x
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CLIQUE vs. VC

• Theorem:  V' is a clique of G if and only if V – 
V' is a vertex cover of Gc.

u

z

y

v

x

w w

u

z

y

v

x

the nodes in V' would only "cover" missing edges and thus are not needed in Gc

clique
of size 3

VC of 
size 3
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CLIQUE vs. VC

• Theorem:  V' is a clique of G if and only if V – 
V' is a vertex cover of Gc.

u

z

y

v

x

w w

u

z

y

v

x

the nodes in V' would only "cover" missing edges and thus are not needed in Gc

clique
of size 4

VC of 
size 2
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VC and CLIQUE

• Can use previous observation to show 
that VC  ≤p CLIQUE and also to show 
that CLIQUE ≤p VC.



111

Useful Reference

• Additional source:  Computers and 
Intractability, A Guide to the Theory of 
Intractability, M. Garey and D. Johnson, 
W. H. Freeman and Co., 1979 
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Dealing with NP-Complete 
Problems
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Dealing with NP-Completeness

• Suppose the problem you need to solve is NP-
complete.  What do you do next?

• hope/show bad running time does not happen 
for inputs of interest

• find heuristics to improve running time in  
many cases (but no guarantees)

• find a polynomial time algorithm that is 
guaranteed to give an answer close to optimal
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Optimization Problems

• Concentrate on approximation algorithms for 
optimization problems:
• every candidate solution  has a positive cost

• Minimization problem: goal is to find smallest 
cost solution
• Ex:  Vertex cover problem, cost is size of VC

• Maximization problem: goal is to find largest 
cost solution
• Ex:  Clique problem, cost is size of clique
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Approximation Algorithms

An approximation algorithm for an 
optimization problem
• runs in polynomial time and
• always returns a candidate solution
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Ratio Bound

Ratio bound: Bound the ratio of the cost of 
the solution returned by the approximation 
algorithm and the cost of an optimal solution
• minimization problem:  

cost of approx solution / cost of optimal solution
• maximization problem:

cost of optimal solution / cost of approx solution

So ratio is always at least 1, goal is to get it 
as close to 1 as we can



Approximation Algorithms

A poly-time algorithm A is called a                 
δ-approximation algorithm  for a minimization 
problem P if and only if for every problem 
instance I of P with an optimal solution value 
OPT(I), it delivers a solution of value A(I) 
satisfying A(I) ≤ δOPT(I).
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Approximation Algorithms

A poly-time algorithm A is called a                 
δ-approximation algorithm  for a maximization 
problem P if and only if for every problem 
instance I of P with an optimal solution value 
OPT(I), it delivers a solution of value A(I) 
satisfying A(I) ≥ δOPT(I).
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Approximation Algorithm for 
Minimum Vertex Cover Problem

input:  G = (V,E)
C := ∅
E' := E
while E' ≠ ∅ do
   pick any (u,v) in E'
   C := C U {u,v}
   remove from E' every edge incident on u or v
endwhile
return C
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Min VC Approx Algorithm

• Time is O(E), which is polynomial.
• How good an approximation does it 

provide?
• Let's look at an example.
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Min VC Approx Alg Example

a gfe

dcb

choose (b,c):  remove (b,c), (b,a), (c,e), (c,d)
choose (e,f): remove (e,f), (e,d), (d,f)
Answer:  {b,c,e,f,d,g}
Optimal answer:  {b,d,e}
Algorithm's ratio bound is 6/3 = 2.
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Ratio Bound of Min VC Alg

Theorem:  Min VC approximation algorithm has ratio 
bound of 2.

Proof:  Let A be the total set of edges chosen to be 
removed.

• Size of VC returned is 2*|A| since no two edges in 
A share an endpoint.

• Size of A is at most size of a min VC since min VC 
must contain at least one node for each edge in A.

• Thus cost of approx solution is at most twice cost 
of optimal solution
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More on Min VC Approx Alg

• Why not run the approx alg and then divide 
by 2 to get the optimal cost?

• Because answer is not always exactly twice 
the optimal, just never more than twice the 
optimal.

• For instance, a different choice of edges to 
remove gives a different answer:
• Choosing (d,e) and then (b,c) produces answer 

{b,c,d,e} with cost 4 as opposed to optimal cost 3
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Triangle Inequality

• Assume TSP inputs with the triangle 
inequality:
• distances satisfy property that for all 

cities a, b, and c, dist(a,c) ≤ dist(a,b) + dist
(b,c)

• i.e., shortest path between 2 cities is 
direct route

• Depending on what you are modeling 
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TSP Approximation Algorithm

• input:  set of cities and distances b/w them 
that satisfy the triangle inequality

• create complete graph G = (V,E), where V is 
set of cities and weight on edge (a,b) is dist
(a,b)

• compute MST of G
• Go twice around the MST to get a tour (that 

will have duplicates)
• Remove duplicates to avoid visiting a city 

more than once
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Analysis of TSP Approx Alg

• Running time is polynomial (creating 
complete graph takes O(V2) time, 
Kruskal's MST algorithm takes time O
(E log E) = O(V2log V).

• How good is the quality of the solution?
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Analysis of TSP Approx Alg

• cost of approx solution ≤ 2*weight of 
MST, by triangle inequality

• Why?

ca

b
when tour created by
going around the MST 
is adjusted to remove duplicate
nodes, the two red edges
are replaced with the
green diagonal edge
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Analysis of TSP Approx Alg

• weight of MST < length of min tour
• Why?  
• Min tour minus one edge is a spanning 

tree T, whose weight must be at least 
the weight of MST.

• And weight of min tour is greater than 
weight of T.



128

Analysis of TSP Approx Alg

• Putting the pieces together:
• cost of approx solution ≤ 2*weight of 

MST
   ≤ 2*cost of min tour
• So approx ratio is at most 2.

Suppose we don't have triangle inequality.
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TSP Without Triangle Inequality

Theorem:  If P ≠ NP, then no polynomial 
time approximation algorithm for TSP 
(w/o triangle inequality) can have a 
constant ratio bound.

Proof:  We will show that if there is such 
an approximation algorithm, then we 
could solve a known NP-complete 
problem (Hamiltonian cycle) in 
polynomial time, so P would equal NP.
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HC Exact Algorithm using TSP 

input:  G = (V,E)
1. convert G to this TSP input:

• one city for each node in V
• distance between cities u and v is 1 if (u,v) is in E
• distance between cities u and v is r*|V| if (u,v) is 

not in E, where r is the ratio bound of the TSP 
approx alg

• Note:  This TSP input does not satisfy the 
triangle inequality
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HC (Exact) Algorithm Using 

2. run TSP approx alg on the input just 
created

3. if cost of approx solution returned in 
step 2 is ≤ r*|V| then return YES else 
return NO

Running time is polynomial.
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Correctness of HC Algorithm

• If G has a HC, then optimal tour in TSP 
input constructed corresponds to that 
cycle and has weight |V|.  

• Approx algorithm returns answer with 
cost at most r*|V|.

• So if G has HC, then algorithm returns 
YES.
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Correctness of HC Algorithm

• If G has no HC, then optimal tour for 
TSP input constructed must use at least 
one edge not in G, which has weight r*|
V|.

• So weight of optimal tour is > r*|V|, and 
answer returned by approx alg has 
weight > r*|V|.

• So if G has not HC, then algorithm 
returns NO.



Set Cover

Given a universe U of n elements, a 
collection S = {S1,S2,...,Sk} of subsets of U, 
and a cost function c: S->Q+, find a 
minimum cost subcollection of S that 
covers all the elements of U. 
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Example

We might want to select a committee 
consisting of people who have combined 
all skills. 
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Cost-Effectiveness

We are going to pick a set according to 
its cost effectiveness.
Let C be the set of elements that are 
already covered.
The cost effectiveness of a set S is the 
average cost at which it covers new 
elements: c(S)/|S-C|. 
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Greedy Set Cover

• C := ∅
• while C ≠ U do

• Find most cost effective set in current 
iteration, say S, and pick it.  

• For each e in S, set price(e)= c(S)/|S-C|.
• C := C∪S

• Output C
136



Theorem

Greedy Set Cover is an Hm-approximation 
algorithm, where m = max{ |Si| : 1<=i<=k}. 
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Lemma

For all sets T in S, we have 
∑e in T price(e) <= c(T) Hx  with x=|T|

Proof: Let e in T∩(Si \ ∪j<i  Sj) and 

Vi= T \ ∪j<i  Sj be the remaining part of T 

before being covered by the greedy cover.
138



Lemma (2)

Then the greedy property implies that
price(e) <= c(T)/|Vi|
Let e1,...,em be the elements of T in the 
order chosen by the greedy algorithm. 
It follows that 
price(ek) <= w(T)/(|T|-k+1). 
Summing over all k yields the claim.   
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Proof of the Theorem

• Let A be the optimal set cover and B the set 
cover returned by the greedy algorithm.

• ∑ price(e) <= ∑S in A ∑e in S price(e)                     
By the lemma, this is bounded by 

• ∑T in A c(T)H|T| 

• The latter sum is bounded by ∑T in A c(T) times 
the Harmonic number of the cardinality of 
the largest set in S. 
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Example

• Let U = {e1,...,en} 
• S = { {e1},...,{en}, {e1,...,en } } 
• c({ei}) = 1/i
• c({e1,...,en })=1+ε
• The greedy algorithm computes a cover 

of cost Hn and the optimal cover is 1+ε
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