
1

NP-Completeness

Andreas Klappenecker

[based on slides by Prof. Welch]

2

Prelude: Informal Discussion

(Incidentally, we will never get
very formal in this course)

3

Polynomial Time Algorithms

• Most of the algorithms we have seen so far
run in time that is upper bounded by a
polynomial in the input size
• sorting: O(n2), O(n log n), …

• matrix multiplication: O(n3), O(n log
2

7)

• graph algorithms: O(V+E), O(E log V), …

• In fact, the running time of these algorithms
are bounded by small polynomials.

4

Categorization of Problems

We will consider a computational problem
tractable if and only if it can be solved in
polynomial time.

5

Decision Problems and the class P

A computational problem with yes/no
answer is called a decision problem.

We shall denote by P the class of all
decision problems that are solvable in
polynomial time.

6

Why Polynomial Time?

It is convenient to define decision problems to be
tractable if they belong to the class P, since
- the class P is closed under composition.
- the class P becomes more or less independent of the
computational model.
[Typically, computational models can be transformed
into each other by polynomial time reductions.]

Of course, no one will consider a problem requiring an
Ω(n100) algorithm as efficiently solvable. However, it
seems that most problems in P that are interesting in
practice can be solved fairly efficiently.

7

The Class NP

We shall denote by NP the class of all
decision problems for which a candidate
solution can be verified in polynomial
time.

[We may not be able to find the solution, but
we can verify the solution in polynomial time if
someone is so kind to give us the solution.]

Sudoku

• The problem is given as an n2 x n2 array which
is divided into blocks of n x n squares.

• Some array entries are filled with an integer
in the range [1.. n2].

• The goal is to complete the array such that
each row, column, and block contains each
integer from [1..n2].

8

Sudoku

• Finding the solution might be difficult, but
verifying the solution is easy.

• The Sudoku decision problem is whether a
given Sudoku problem has a solution.

9

7

The Class NP

The decision problems in NP can be solved on a
nondeterministic Turing machine in polynomial
time. Thus, NP stands for nondeterministic
polynomial time.

Obviously, the class P is a subset of NP.

NP does not stand for not-P. Why?

8

Verifying a Candidate Solution

• Difference between solving a problem
and verifying a candidate solution:

• Solving a problem: is there a path in
graph G from node u to node v with at
most k edges?

• Verifying a candidate solution: is v0, v1,
…, vl a path in graph G from node u to
node v with at most k edges?

9

Verifying a Candidate Solution

• A Hamiltonian cycle in an undirected
graph is a cycle that visits every node
exactly once.

• Solving a problem: Is there a
Hamiltonian cycle in graph G?

• Verifying a candidate solution: Is v0, v1,
…, vl a Hamiltonian cycle of graph G?

10

Verifying a Candidate Solution

• Intuitively it seems much harder (more
time consuming) in some cases to solve a
problem from scratch than to verify
that a candidate solution actually solves
the problem.

• If there are many candidate solutions
to check, then even if each individual
one is quick to check, overall it can take
a long time

11

Verifying a Candidate Solution

• Many practical problems in computer
science, math, operations research,
engineering, etc. are poly time
verifiable but have no known poly time
algorithm
• Wikipedia lists problems in computational

geometry, graph theory, network design,
scheduling, databases, program
optimization and more

12

P versus NP

13

P vs. NP

• Although poly-time verifiability seems
like a weaker condition than poly time
solvability, no one has been able to
prove that it is weaker (i.e., describes a
larger class of problems)

• So it is unknown whether P = NP.

14

P and NP

all problems

P

NP
or

all problems

P=NP

15

NP-Complete Problems

• NP-complete problems is class of
"hardest" problems in NP.

• If an NP-complete problem can be
solved in polynomial time, then all
problems in NP can be, and thus P = NP.

16

Possible Worlds

all problems

P

NP
or

all problems

P=NP=NPCNPC

NPC = NP-complete

17

P = NP Question

• Open question since about 1970
• Great theoretical interest
• Great practical importance:

• If your problem is NP-complete, then don't
waste time looking for an efficient
algorithm

• Instead look for efficient approximations,
heuristics, etc.

18

Decision Problems and
Formal Languages

19

NP-Completeness Theory

As we have already mentioned, the theory is
based considering decision problems.

Example:
-Does there exist a path from node u to node v
in graph G with at most k edges.
- Instead of: What is the length of the
shortest path from u to v? Or even: What is
the shortest path from u to v?

20

Decision Problems

Why focus on decision problems?
• Solving the general problem is at least as

hard as solving the decision problem version
• For many natural problems, we only need

polynomial additional time to solve the general
problem if we already have a solution to the
decision problem

• We can use "language acceptance" notions

21

Languages and Decision

• Language: A set of strings over some
alphabet

• Decision problem: A decision problem
can be viewed as the formal language
consisting of exactly those strings that
encode YES instances of the problem

• What do we mean by encoding Yes
instances?

22

Encodings

• Every abstract problem has to be
represented somehow for the computer to
work on it - ultimately a binary
representation

• Consider the problem: "Is x prime?"
• Each input is a positive integer
• Common way to encode an integer is in binary
• Primes decision problem is {10,11,101,111,…}

since 10 encodes 2, 11 encodes 3, 101 encodes
5, 111 encodes 7, etc.

23

More Complicated Encodings

• Suggest an encoding for the shortest
path decision problem

• Represent G, u, v and k somehow in
binary

• Decision problem is all encodings of a
graph G, two nodes u and v, and an
integer k such that G really does have a
path from u to v of length at most k

24

Definition of P

• P is the set of all decision problems
that can be computed in time O(nk),
where n is the length of the input string
and k is a constant

• "Computed" means there is an algorithm
that correctly returns YES or NO
whether the input string is in the
language

25

Example of a Decision Problem

• "Given a graph G, nodes u and v, and integer k,
is there a path in G from u to v with at most k
edges?"

• Why is this a decision problem?
• Has YES/NO answers

• We are glossing over the particular encoding
(tedious but straightforward)

• Why is this problem in P?
• Do BFS on G in polynomial time

26

Definition of NP

• NP = set of all decision problems for
which a candidate solution can be
verified in polynomial time

• Does *not* stand for "not polynomial"
• in fact P is a subset of NP

• NP stands for "nondeterministic
polynomial"
• more info on this in CPSC 433

27

Example of a Decision Problem

• Decision problem: Is there a path in G
from u to v of length at most k?

• Candidate solution: a sequence of nodes
v0, v1, …, vl

• To verify:
• check if l ≤ k
• check if v0 = u and vl = v

• check if each (vi,vi+1) is an edge of G

28

Example of a Decision Problem

• Decision problem: Does G have a Hamiltonian
cycle?

• Candidate solution: a sequence of nodes v0,
v1, …, vl

• To verify:
• check if l = number of nodes in G
• check if v0 = vl and there are no repeats in v0,

v1, …, vl-1

• check if each (vi,vi+1) is an edge of G

29

Going From Verifying to Solving

• for each candidate solution do
• verify if the candidate really works
• if so then return YES

• return NO

Difficult to use in practice, though, if
number of candidate solutions is large

30

Number of Candidate Solutions

• "Is there a path from u to v in G of
length at most k?": more than n!
candidate solutions where n is the
number of nodes in G

• "Does G have a Hamiltonian cycle?": n!
candidate solutions

31

Trying to be Smarter

• For the length-k path problem, we can
do better than the brute force
approach of trying all possible
sequences of nodes
• use BFS

• For the Hamiltonian cycle problem, no
one knows a way that is significantly
faster than trying all possibilities
• but no one has been able to prove that

32

Polynomial Reduction

33

Polynomial Reduction

A polynomial reduction (or transformation)
from language L1 to language L2 is a function f
from strings over L1's alphabet to strings over
L2's alphabet such that
(1) f is computable in polynomial time
(2) for all x, x is in L1 if and only if f(x) is in L2

34

Polynomial Reduction

all strings over L1's
alphabet

L1

all strings over L2's
alphabet

L2

f

35

Polynomial Reduction

• YES instances map to YES instances
• NO instances map to NO instances
• computable in polynomial time
• Notation: L1 ≤p L2

• [Think: L2 is at least as hard as L1]

36

Polynomial Reduction Theorem

Theorem: If L1 ≤p L2 and L2 is in P,

 then L1 is in P.

Proof: Let A2 be a polynomial time algorithm
for L2. Here is a polynomial time algorithm A1
for L1.

•input: x
•compute f(x)

•run A2 on input f(x)

|x| = n
takes p(n) time
takes q(p(n)) time
takes O(1) time

37

Implications

• Suppose that L1 ≤p L2
• If there is a polynomial time algorithm

for L2, then there is a polynomial time
algorithm for L1.

• If there is no polynomial time algorithm
for L1, then there is no polynomial time
algorithm for L2.

• Note the asymmetry!

38

HC ≤p TSP

39

Traveling Salesman Problem

• Given a set of cities, distances between all pairs of
cities, and a bound B, does there exist a tour
(sequence of cities to visit) that returns to the start
and requires at most distance B to be traveled?

• TSP is in NP:
• given a candidate solution (a tour), add up all the

distances and check if total is at most B

40

Example of Polynomial

• Theorem: HC (Hamiltonian circuit problem)
≤p TSP.

• Proof: Find a way to transform ("reduce")
any HC input (G) into a TSP input (cities,
distances, B) such that
• the transformation takes polynomial time
• the HC input is a YES instance (G has a HC) if

and only if the TSP input constructed is a YES
instance (has a tour that meets the bound).

41

The Reduction

• Given undirected graph G = (V,E) with m
nodes, construct a TSP input like this:
• set of m cities, labeled with names of nodes in V
• distance between u and v is 1 if (u,v) is in E, and is

2 otherwise
• bound B = m

• Why can this TSP input be constructed in
time polynomial in the size of G?

42

Figure for Reduction

1 2

4 3

dist(1,2) = 1
dist(1,3) = 1
dist(1,4) = 1
dist(2,3) = 1
dist(2,4) = 2
dist(3,4) = 1
bound = 4HC input

TSP inputHC: 1,2,3,4,1
tour w/ distance 4: 1,2,3,4,1

43

Figure for Reduction

1 2

4 3

dist(1,2) = 1
dist(1,3) = 1
dist(1,4) = 2
dist(2,3) = 1
dist(2,4) = 2
dist(3,4) = 1
bound = 4HC input

TSP inputno HC
no tour w/ distance at most 4

44

Correctness of the Reduction

• Check that input G is in HC (has a
Hamiltonian cycle) if and only if the
input constructed is in TSP (has a tour
of length at most m).

• => Suppose G has a Hamiltonian cycle v1,
v2, …, vm, v1.
• Then in the TSP input, v1, v2, …, vm, v1 is a

tour (visits every city once and returns to
the start) and its distance is 1⋅m = B.

45

Correctness of the Reduction

• <=: Suppose the TSP input constructed
has a tour of total length at most m.
• Since all distances are either 1 or 2, and

there are m of them in the tour, all
distances in the tour must be 1.

• Thus each consecutive pair of cities in the
tour correspond to an edge in G.

• Thus the tour corresponds to a Hamiltonian
cycle in G.

46

Implications:

• If there is a polynomial time algorithm
for TSP, then there is a polynomial time
algorithm for HC.

• If there is no polynomial time algorithm
for HC, then there is no polynomial time
algorithm TSP.

• Note the asymmetry!

47

Transitivity of Polynomial

• Theorem: If L1 ≤p L2 and L2 ≤p L3,

 then L1 ≤p L3.

• Proof:

L1 L2 L3

f g

g(f)

48

NP-Completeness

49

Definition of NP-Complete

L is NP-complete if and only if
(1) L is in NP and
(2) for all L' in NP, L' ≤p L.

In other words, L is at least as hard as
every language in NP.

50

Implication of NP-Completeness

Theorem: Suppose L is NP-complete.
(a) If there is a poly time algorithm for L,

then P = NP.
(b) If there is no poly time algorithm for

L, then there is no poly time algorithm
for any NP-complete language.

51

Showing NP-Completeness

• How to show that a problem (language) L is
NP-complete?

• Direct approach: Show
(1) L is in NP
(2) every other language in NP is polynomially

reducible to L.

• Better approach: once we know some NP-
complete problems, we can use reduction to
show other problems are also NP-complete.
How?

52

Showing NP-Completeness with

To show L is NP-complete:
• (1) Show L is in NP.
• (2.a) Choose an appropriate known NP-

complete language L'.

• (2.b) Show L' ≤p L.

Why does this work? By transitivity: Since
every language L'' in NP is polynomially
reducible to L', L'' is also polynomially
reducible to L.

53

The First NP-Complete Problem:
Satisfiability - SAT

54

First NP-Complete Problem

How do we get started? Need to show via
brute force that some problem is NP-complete.
• Logic problem "satisfiability" (or SAT).
• Given a boolean expression (collection of
boolean variables connected with ANDs and
ORs), is it satisfiable, i.e., is there a way to
assign truth values to the variables so that the
expression evaluates to TRUE?

55

Conjunctive Normal Form (CNF)

• boolean variables: take on values T or F
• Ex: x, y

• literal: variable or negation of a variable
• Ex: x, x

• clause: disjunction (OR) of several literals
• Ex: x ∨ y ∨ z ∨ w

• CNF formula: conjunction (AND) of several
clauses
• Ex: (x ∨ y) ∧ (z ∨ w ∨ x)

56

Satisfiable CNF Formula

• Is (x ∨ ¬y) satisfiable?
• yes: set x = T and y = F to get overall T

• Is x ∧ ¬x satisfiable?
• no: both x = T and x = F result in overall F

• Is (x ∨ y) ∧ (z ∨ w ∨ x) satisfiable?
• yes: x = T, y = T, z = F, w = T result in overall T

• If formula has n variables, then there are
2n different truth assignments.

57

Definition of SAT

• SAT = all (and only) strings that encode
satisfiable CNF formulas.

58

SAT is NP-Complete

• Cook's Theorem: SAT is NP-complete.
• Proof ideas:
• (1) SAT is in NP: Given a candidate solution (a

truth assignment) for a CNF formula, verify
in polynomial time (by plugging in the truth
values and evaluating the expression) whether
it satisfies the formula (makes it true).

59

SAT is NP-Complete

• How to show that every language in NP is
polynomially reducible to SAT?

• Key idea: the common thread among all the
languages in NP is that each one is solved by
some nondeterministic Turing machine (a
formal model of computation) in polynomial
time.

• Given a description of a poly time TM,
construct in poly time, a CNF formula that
simulates the computation of the TM.

60

Proving NP-Completeness By

To show L is NP-complete:
(1) Show L is in NP.
(2.a) Choose an appropriate known NP-

complete language L'.
(2.b) Show L' ≤p L: Describe an algorithm to

compute a function f such that
 f is poly time
 f maps inputs for L' to inputs for L s.t. x is in

L' if and only if f(x) is in L

61

Get the Direction Right!

• We want to show that L is at least as hard
(time-consuming) as L'.

• So if we have an algorithm A for L, then we
can solve L' with polynomial overhead

• Algorithm for L':
• input: x
• compute y = f(x)
• run algorithm A for L on y
• return whatever A returns

L' ≤p L

known unknown

62

3SAT

63

Definition of 3SAT

• 3SAT is a special case of SAT: each clause
contains exactly 3 literals.

• Is 3SAT in NP?
• Yes, because SAT is in NP.

• Is 3SAT NP-complete?
• Not obvious. It has a more regular structure, which

can perhaps be exploited to get an efficient algorithm
• In fact, 2SAT does have a polynomial time algorithm

64

Showing 3SAT is NP-Complete

(1) To show 3SAT is in NP, use same algorithm as
for SAT to verify a candidate solution (truth
assignment)

(2.a) Choose SAT as known NP-complete problem.
(2.b) Describe a reduction from
 SAT inputs to 3SAT inputs

 computable in poly time
 SAT input is satisfiable iff constructed 3SAT

input is satisfiable

65

Reduction from SAT to 3SAT
• We're given an arbitrary CNF formula C = c1∧ c2
∧ … ∧ cm over set of variables U
• each ci is a clause (disjunction of literals)

• We will replace each clause ci with a set of
clauses Ci', and may use some extra variables Ui'
just for this clause

• Each clause in Ci' will have exactly 3 literals

• Transformed input will be conjunction of all the
clauses in all the Ci'

• New clauses are carefully chosen…

66

Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk

• Case 1: k = 1.
• Use extra variables yi

1 and yi
2.

• Replace ci with 4 clauses:

 (z1 ∨ yi
1 ∨ yi

2)

 (z1 ∨¬ yi
1 ∨ yi

2)

 (z1 ∨ yi
1 ∨ ¬yi

2)

 (z1 ∨ ¬yi
1 ∨ ¬yi

2)

67

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 2: k = 2.
• Use extra variable yi

1.

• Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ ¬yi
1)

 (z1 ∨ z2 ∨ yi
1)

68

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 3: k = 3.
• No extra variables are needed.
• Keep ci:

 (z1 ∨ z2 ∨ z3)

69

Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 4: k > 3.
• Use extra variables yi

1, …, yi
k-3.

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1) . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . . (¬yi
k-3 ∨ zk-1 ∨ zk)

70

Correctness of Reduction

• Show that CNF formula C is satisfiable iff
the 3-CNF formula C' constructed is
satisfiable.

• =>: Suppose C is satisfiable. Come up with
a satisfying truth assignment for C'.

• For variables in U, use same truth
assignments as for C.

• How to assign T/F to the new variables?

71

Truth Assignment for New
Variables

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 1: k = 1.
• Use extra variables yi

1 and yi
2.

• Replace ci with 4 clauses:

 (z1 ∨ yi
1 ∨ yi

2)

 (z1 ∨ ¬yi
1 ∨ yi

2)

 (z1 ∨ yi
1 ∨ ¬yi

2)

 (z1 ∨ ¬yi
1 ∨ ¬yi

2)

Since z1 is true, it does
not
matter how we assign
yi

1 and yi
2

72

Truth Assignment for New
Variables

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 2: k = 2.
• Use extra variable yi

1.

• Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ ¬yi
1)

 (z1 ∨ z2 ∨ yi
1)

Since either z1 or z2 is true,
it does not matter how we
assign yi

1

73

Truth Assignment for New
Variables

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 3: k = 3.
• No extra variables are needed.
• Keep ci:

 (z1 ∨ z2 ∨ z3)

No new variables.

74

Truth Assignment for New
Variables

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 4: k > 3.
• Use extra variables yi

1, …, yi
k-3.

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1) . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . . (yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is
z1 or z2, set all yi's
to false: then all
later clauses have
a true literal

75

Truth Assignment for New
Variables

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 4: k > 3.
• Use extra variables yi

1, …, yi
k-3.

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1) . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . . (¬yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is
zk-1 or zk, set all yi's
to true: then all
earlier clauses
have a true literal

76

Truth Assignment for New
Variables
Let ci = z1∨ z2 ∨ … ∨ zk

• Case 4: k > 3.
• Use extra variables yi

1, …, yi
k-3.

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1) . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . . (¬yi
k-3 ∨ zk-1 ∨ zk)

If first true literal is
in between, set all
earlier yi's to true
and all later yi's to
false

77

Correctness of Reduction

• <=: Suppose the newly constructed 3SAT
formula C' is satisfiable. We must show that
the original SAT formula C is also satisfiable.

• Use the same satisfying truth assignment for
C as for C' (ignoring new variables).

• Show each original clause has at least one
true literal in it.

78

Original Clause Has a True
Literal

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 1: k = 1.
• Use extra variables yi

1 and yi
2.

• Replace ci with 4 clauses:

 (z1 ∨ yi
1 ∨ yi

2)

 (z1 ∨ ¬yi
1 ∨ yi

2)

 (z1 ∨ yi
1 ∨ ¬yi

2)

 (z1 ∨ ¬yi
1 ∨ ¬yi

2)

For every assignment of
yi

1 and yi
2 , in order for all

4 clauses to have a true literal,
z1 must be true.

79

Original Clause Has a True
Literal

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 2: k = 2.
• Use extra variable yi

1.

• Replace ci with 2 clauses:

 (z1 ∨ z2 ∨ yi
1)

 (z1 ∨ z2 ∨ ¬yi
1)

For either assignment of
yi

1, in order for both clauses
to have a true literal,
z1 or z2 must be true.

80

Original Clause Has a True

Let ci = z1∨ z2 ∨ … ∨ zk

• Case 3: k = 3.
• No extra variables are needed.
• Keep ci:

 (z1 ∨ z2 ∨ z3)

No new variables.

81

Original Clause Has a True
Literal
Let ci = z1∨ z2 ∨ … ∨ zk

• Case 4: k > 3.
• Use extra variables yi

1, …, yi
k-3.

• Replace ci with k-2 clauses:

 (z1 ∨ z2 ∨ yi
1) . . .

 (¬yi
1 ∨ z3 ∨ yi

2) (¬yi
k-5 ∨ zk-3 ∨ yi

k-4)

 (¬yi
2 ∨ z4 ∨ yi

3) (¬yi
k-4 ∨ zk-2 ∨ yi

k-3)

 . . . (¬yi
k-3 ∨ zk-1 ∨ zk)

Suppose in contra-
diction all zi's are
false. Then yi1 must
be true, yi2 must be
true,... Impossible!

87

Why is Reduction Poly Time?

• The running time of the reduction (the
algorithm to compute the 3SAT formula
C', given the SAT formula C) is
proportional to the size of C'

• rules for constructing C' are simple to
calculate

88

Size of New Formula

• original clause with 1 literal becomes 4 clauses with
3 literals each

• original clause with 2 literals becomes 2 clauses
with 3 literals each

• original clause with 3 literals becomes 1 clause with
3 literals

• original clause with k > 3 literals becomes k-2
clauses with 3 literals each

• So new formula is only a constant factor larger
than the original formula

89

Vertex Cover

90

Vertex Cover of a Graph

• Given undirected graph G = (V,E)
• A subset V' of V is a vertex cover if every

edge in E has at least one endpoint in V'
• Easy to find a big vertex cover: let V' be

all the nodes
• What about finding a small vertex cover?

91

Vertex Cover Example

vertex cover
of size 3

vertex cover
of size 2

92

Vertex Cover Decision Problem

• VC: Given a graph G and an integer K, does
G have a vertex cover of size at most K?

• Theorem: VC is NP-complete.
• Proof: First, show VC is in NP:
• Given a candidate solution (a subset V' of

the nodes), check in polynomial time if |V'| ≤
K and if every edge has at least one
endpoint in V'.

93

VC is NP-Complete

• Now show some known NP-complete problem
is polynomially reducible to VC.

• So far, we have two options, SAT and 3SAT.
• Let's try 3SAT: since inputs to 3SAT have a

more regular structure than inputs to SAT,
maybe it will be easier to define a reduction
from 3CNF formulas to graphs.

94

Reducing 3SAT to VC

• Let C = c1∧…∧cm be any 3SAT input over set over
variables U = {u1,…,un}.

• Construct a graph G like this:
• two nodes for each variable, ui and ¬ui, with an edge

between them ("literal" nodes)
• three nodes for each clause cj, "placeholders" for the

three literals in the clause: a1
j, a2

j, a3
j, with edges making

a triangle
• edges connecting each placeholder node in a triangle to

the corresponding literal node

• Set K to be n + 2m.

95

Example of Reduction

• 3SAT input has variables u1, u2, u3, u4 and
clauses (u1∨¬u3∨¬u4)∧(¬u1∨u2∨¬u4).

• K = 4 + 2*2 = 8
u1

¬u1 u2
¬u2 ¬u3u3

¬u4u4

a2
1

a3
1a1

1

a2
2

a3
2a1

2

96

Correctness of Reduction

• Suppose the 3SAT input (with m clauses over
n variables) has a satisfying truth assignment.

• Show there is a VC of G of size n + 2m:
• pick the node in each pair corresponding to the

true literal w.r.t. the satisfying truth assignment
• pick two of the nodes in each triangle such that

the excluded node is connected to a true literal

97

Example of Reduction

u1
¬u1 u2

¬u2 ¬u3u3
¬u4u4

a2
1

a3
1a1

1

a2
2

a3
2a1

2

(u1∨¬u3∨¬u4)∧(¬u1∨u2∨¬u4)
u1= T
u2= F
u3= T
u4= F

98

Correctness of Reduction

• Since one from each pair is chosen, the edges
in the pairs are covered.

• Since two from each triangle are chosen, the
edges in the triangles are covered.

• For edges between triangles and pairs:
• edge to a true literal is covered by pair choice
• edges to false literals are covered by triangle

choices

99

Correctness of Reduction

• Suppose G has a vertex cover V' of size at
most K.

• To cover the edges in the pairs, V' must
contain at least one node in each pair

• To cover the edges in the triangles, V' must
contain at least two nodes in each triangle

• Since there are n pairs and m triangles, and
since K = n + 2m, V' contains exactly one from
each pair and two from each triangle.

100

Correctness of Reduction

• Use choice of nodes in pairs to define a truth
assignment:
• if node ui is chosen, then set variable ui to T

• if node ¬ui is chosen, then set variable ui to F

• Why is this a satisfying truth assignment?
• Seeking a contradiction, suppose that some

clause has no true literal….

101

Correctness of Reduction

u1
¬u1 ¬u4u4u2

¬u2

a2
j

a3
ja1

j

In order to cover the triangle-to-literal edges, all three
nodes in this triangle must be chosen, contradicting
fact that only two can be chosen (since size is n + 2m).

102

Running Time of the Reduction

• Show graph constructed is not too much
bigger than the input 3SAT formula:
• number of nodes is 2n + 3m
• number of edges is n + 3m + 3m

• Size of VC input is polynomial in size of 3SAT
input, and rules for constructing the VC input
are quick to calculate, so running time is
polynomial.

103

Further Examples

104

Some NP-Complete Problems

• SAT
• 3-SAT
• VC
• TSP
• CLIQUE (does G contain a completely connected

subgraph of size at least K?)
• HC (does G have a Hamiltonian cycle?)
• SUBSET-SUM (given a set S of natural numbers

and integer t, is there a subset of S that sum to
t?)

105

Relationship Between Some NP-

• Textbook shows NP-completeness using this tree
of reductions: CIRCUIT-SAT

SAT

3-SAT

CLIQUE SUBSET-SUM

VC

HC

TSP

We've seen
the orange
reductions

106

Clique

107

CLIQUE vs. VC

• The complement of graph G = (V,E) is
the graph Gc = (V,Ec), where Ec consists
of all the edges that are missing in G.

u

z

y

v

x

w w

u

z

y

v

x

108

CLIQUE vs. VC

• Theorem: V' is a clique of G if and only if V –
V' is a vertex cover of Gc.

u

z

y

v

x

w w

u

z

y

v

x

the nodes in V' would only "cover" missing edges and thus are not needed in Gc

clique
of size 3

VC of
size 3

109

CLIQUE vs. VC

• Theorem: V' is a clique of G if and only if V –
V' is a vertex cover of Gc.

u

z

y

v

x

w w

u

z

y

v

x

the nodes in V' would only "cover" missing edges and thus are not needed in Gc

clique
of size 4

VC of
size 2

110

VC and CLIQUE

• Can use previous observation to show
that VC ≤p CLIQUE and also to show
that CLIQUE ≤p VC.

111

Useful Reference

• Additional source: Computers and
Intractability, A Guide to the Theory of
Intractability, M. Garey and D. Johnson,
W. H. Freeman and Co., 1979

112

Dealing with NP-Complete
Problems

113

Dealing with NP-Completeness

• Suppose the problem you need to solve is NP-
complete. What do you do next?

• hope/show bad running time does not happen
for inputs of interest

• find heuristics to improve running time in
many cases (but no guarantees)

• find a polynomial time algorithm that is
guaranteed to give an answer close to optimal

114

Optimization Problems

• Concentrate on approximation algorithms for
optimization problems:
• every candidate solution has a positive cost

• Minimization problem: goal is to find smallest
cost solution
• Ex: Vertex cover problem, cost is size of VC

• Maximization problem: goal is to find largest
cost solution
• Ex: Clique problem, cost is size of clique

115

Approximation Algorithms

An approximation algorithm for an
optimization problem
• runs in polynomial time and
• always returns a candidate solution

116

Ratio Bound

Ratio bound: Bound the ratio of the cost of
the solution returned by the approximation
algorithm and the cost of an optimal solution
• minimization problem:

cost of approx solution / cost of optimal solution
• maximization problem:

cost of optimal solution / cost of approx solution

So ratio is always at least 1, goal is to get it
as close to 1 as we can

Approximation Algorithms

A poly-time algorithm A is called a
δ-approximation algorithm for a minimization
problem P if and only if for every problem
instance I of P with an optimal solution value
OPT(I), it delivers a solution of value A(I)
satisfying A(I) ≤ δOPT(I).

115

Approximation Algorithms

A poly-time algorithm A is called a
δ-approximation algorithm for a maximization
problem P if and only if for every problem
instance I of P with an optimal solution value
OPT(I), it delivers a solution of value A(I)
satisfying A(I) ≥ δOPT(I).

116

118

Approximation Algorithm for
Minimum Vertex Cover Problem

input: G = (V,E)
C := ∅
E' := E
while E' ≠ ∅ do
 pick any (u,v) in E'
 C := C U {u,v}
 remove from E' every edge incident on u or v
endwhile
return C

119

Min VC Approx Algorithm

• Time is O(E), which is polynomial.
• How good an approximation does it

provide?
• Let's look at an example.

120

Min VC Approx Alg Example

a gfe

dcb

choose (b,c): remove (b,c), (b,a), (c,e), (c,d)
choose (e,f): remove (e,f), (e,d), (d,f)
Answer: {b,c,e,f,d,g}
Optimal answer: {b,d,e}
Algorithm's ratio bound is 6/3 = 2.

121

Ratio Bound of Min VC Alg

Theorem: Min VC approximation algorithm has ratio
bound of 2.

Proof: Let A be the total set of edges chosen to be
removed.

• Size of VC returned is 2*|A| since no two edges in
A share an endpoint.

• Size of A is at most size of a min VC since min VC
must contain at least one node for each edge in A.

• Thus cost of approx solution is at most twice cost
of optimal solution

122

More on Min VC Approx Alg

• Why not run the approx alg and then divide
by 2 to get the optimal cost?

• Because answer is not always exactly twice
the optimal, just never more than twice the
optimal.

• For instance, a different choice of edges to
remove gives a different answer:
• Choosing (d,e) and then (b,c) produces answer

{b,c,d,e} with cost 4 as opposed to optimal cost 3

123

Triangle Inequality

• Assume TSP inputs with the triangle
inequality:
• distances satisfy property that for all

cities a, b, and c, dist(a,c) ≤ dist(a,b) + dist
(b,c)

• i.e., shortest path between 2 cities is
direct route

• Depending on what you are modeling

124

TSP Approximation Algorithm

• input: set of cities and distances b/w them
that satisfy the triangle inequality

• create complete graph G = (V,E), where V is
set of cities and weight on edge (a,b) is dist
(a,b)

• compute MST of G
• Go twice around the MST to get a tour (that

will have duplicates)
• Remove duplicates to avoid visiting a city

more than once

125

Analysis of TSP Approx Alg

• Running time is polynomial (creating
complete graph takes O(V2) time,
Kruskal's MST algorithm takes time O
(E log E) = O(V2log V).

• How good is the quality of the solution?

126

Analysis of TSP Approx Alg

• cost of approx solution ≤ 2*weight of
MST, by triangle inequality

• Why?

ca

b
when tour created by
going around the MST
is adjusted to remove duplicate
nodes, the two red edges
are replaced with the
green diagonal edge

127

Analysis of TSP Approx Alg

• weight of MST < length of min tour
• Why?
• Min tour minus one edge is a spanning

tree T, whose weight must be at least
the weight of MST.

• And weight of min tour is greater than
weight of T.

128

Analysis of TSP Approx Alg

• Putting the pieces together:
• cost of approx solution ≤ 2*weight of

MST
 ≤ 2*cost of min tour
• So approx ratio is at most 2.

Suppose we don't have triangle inequality.

129

TSP Without Triangle Inequality

Theorem: If P ≠ NP, then no polynomial
time approximation algorithm for TSP
(w/o triangle inequality) can have a
constant ratio bound.

Proof: We will show that if there is such
an approximation algorithm, then we
could solve a known NP-complete
problem (Hamiltonian cycle) in
polynomial time, so P would equal NP.

130

HC Exact Algorithm using TSP

input: G = (V,E)
1. convert G to this TSP input:

• one city for each node in V
• distance between cities u and v is 1 if (u,v) is in E
• distance between cities u and v is r*|V| if (u,v) is

not in E, where r is the ratio bound of the TSP
approx alg

• Note: This TSP input does not satisfy the
triangle inequality

131

HC (Exact) Algorithm Using

2. run TSP approx alg on the input just
created

3. if cost of approx solution returned in
step 2 is ≤ r*|V| then return YES else
return NO

Running time is polynomial.

132

Correctness of HC Algorithm

• If G has a HC, then optimal tour in TSP
input constructed corresponds to that
cycle and has weight |V|.

• Approx algorithm returns answer with
cost at most r*|V|.

• So if G has HC, then algorithm returns
YES.

133

Correctness of HC Algorithm

• If G has no HC, then optimal tour for
TSP input constructed must use at least
one edge not in G, which has weight r*|
V|.

• So weight of optimal tour is > r*|V|, and
answer returned by approx alg has
weight > r*|V|.

• So if G has not HC, then algorithm
returns NO.

Set Cover

Given a universe U of n elements, a
collection S = {S1,S2,...,Sk} of subsets of U,
and a cost function c: S->Q+, find a
minimum cost subcollection of S that
covers all the elements of U.

133

Example

We might want to select a committee
consisting of people who have combined
all skills.

134

Cost-Effectiveness

We are going to pick a set according to
its cost effectiveness.
Let C be the set of elements that are
already covered.
The cost effectiveness of a set S is the
average cost at which it covers new
elements: c(S)/|S-C|.

135

Greedy Set Cover

• C := ∅
• while C ≠ U do

• Find most cost effective set in current
iteration, say S, and pick it.

• For each e in S, set price(e)= c(S)/|S-C|.
• C := C∪S

• Output C
136

Theorem

Greedy Set Cover is an Hm-approximation
algorithm, where m = max{ |Si| : 1<=i<=k}.

137

Lemma

For all sets T in S, we have
∑e in T price(e) <= c(T) Hx with x=|T|

Proof: Let e in T∩(Si \ ∪j<i Sj) and

Vi= T \ ∪j<i Sj be the remaining part of T

before being covered by the greedy cover.
138

Lemma (2)

Then the greedy property implies that
price(e) <= c(T)/|Vi|
Let e1,...,em be the elements of T in the
order chosen by the greedy algorithm.
It follows that
price(ek) <= w(T)/(|T|-k+1).
Summing over all k yields the claim.

139

Proof of the Theorem

• Let A be the optimal set cover and B the set
cover returned by the greedy algorithm.

• ∑ price(e) <= ∑S in A ∑e in S price(e)
By the lemma, this is bounded by

• ∑T in A c(T)H|T|

• The latter sum is bounded by ∑T in A c(T) times
the Harmonic number of the cardinality of
the largest set in S.

140

Example

• Let U = {e1,...,en}
• S = { {e1},...,{en}, {e1,...,en } }
• c({ei}) = 1/i
• c({e1,...,en })=1+ε
• The greedy algorithm computes a cover

of cost Hn and the optimal cover is 1+ε

141

