Undecidability

Andreas Klappenecker

[based on slides by Prof. Welch]
Sources

Understanding Limits of Computing

• So far, we have studied how efficiently various problems can be solved.
• There has been no question as to whether it is possible to solve the problem.
• If we want to explore the boundary between what can and what cannot be computed, we need a model of computation.
Models of Computation

- Need a way to clearly and unambiguously specify how computation takes place
- Many different mathematical models have been proposed:
 - Turing Machines
 - Random Access Machines
 - ...
- They have all been found to be equivalent!
Church-Turing Thesis

- Conjecture: Anything we reasonably think of as an algorithm can be computed by a Turing Machine (specific formal model).
- So we might as well think in our favorite programming language, or in pseudocode.
- Frees us from the tedium of having to provide boring details
 - in principle, pseudocode descriptions can be converted into some appropriate formal model
Short Review of some Basic Set Theory Concepts
Some Notation

If A and B are sets, then the set of all functions from A to B is denoted by B^A.

If A is a set, then $P(A)$ denotes the power set, i.e., $P(A)$ is the set of all subsets of A.
Cardinality

Two sets A and B are said to have the same cardinality if and only if there exists a bijective function from A onto B.

[A function is bijective if it is one-to-one and onto]

We write $|A|=|B|$ if A and B have the same cardinality.

[Note that $|A|=|B|$ says that A and B have the same number of elements, even if we do not yet know about numbers!]
How Set Theorists Count

Set theorists count

- $0 = \{\} \quad // \text{the empty set exists by axiom}$
 This set contains no elements

- $1 = \{0\} = \{\{\}\} \quad // \text{form the set containing } \{\}$
 This set contains one element

- $2 = \{0,1\} = \{\{\}, \{\{\}\}\}$
 This set contains two elements

- Keep including all previously created sets as elements of the next set.
Example

Theorem: $|P(X)| = |2^X|$

Proof: The bijection from $P(X)$ onto 2^X is given by the characteristic function. q.e.d.

Example: $X = \{a,b\}$

- \emptyset corresponds to $f(a)=0$, $f(b)=0$
- $\{a\}$ corresponds to $f(a)=1$, $f(b)=0$
- $\{b\}$ corresponds to $f(a)=0$, $f(b)=1$
- $\{a,b\}$ corresponds to $f(a)=1$, $f(b)=1$
More About Cardinality

Let A and B be sets.

We write $|A| \leq |B|$ if and only if there exists an injective function from A to B.

We write $|A| < |B|$ if and only if there exist an injective function from A to B, but no bijection exists from A to B.
Cardinality

Cantor’s Theorem: Let S be any set. Then $|S| < |P(S)|$.

Proof: Since the function i from S to $P(S)$ given by $i(s) = \{s\}$ is injective, we have $|S| \leq |P(S)|$.

Claim: There does not exist any function f from S to $P(S)$ that is surjective.

Indeed, $T = \{ s \in S : s \notin f(s) \}$ is not contained in $f(S)$.

An element s in S is either contained in T or not.
- If $s \in T$, then $s \notin f(s)$ by definition of T. Thus, $T \neq f(s)$.
- If $s \notin T$, then $s \in f(s)$ by definition of T. Thus, $T \neq f(s)$.

Therefore, f is not surjective. This proves the claim.
Uncountable Sets and Uncomputable Functions
Countable Sets

Let N be the set of natural numbers.

A set X is called countable if and only if there exists a surjective function from N onto X.

Thus, finite sets are countable, N is countable, but the set of real numbers is not countable.
An Uncountable Set

Theorem: The set $\mathbb{N}^\mathbb{N} = \{ f | f: \mathbb{N} \to \mathbb{N} \}$ is not countable.

Proof: We have $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$ by Cantor's theorem. Since $|\mathcal{P}(\mathbb{N})| = |2^\mathbb{N}|$ and $2^\mathbb{N}$ is a subset of $\mathbb{N}^\mathbb{N}$ we can conclude that

$$|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| = |2^\mathbb{N}| \leq |\mathbb{N}^\mathbb{N}|.$$ q.e.d.
Alternate Proof:
The Set \(\mathbb{N}^\mathbb{N} \) is Uncountable

Seeking a contradiction, we assume that the set of functions from \(\mathbb{N} \) to \(\mathbb{N} \) is countable.
Let the functions in the set be \(f_0, f_1, f_2, \ldots \)
We will obtain our contradiction by defining a function \(f^d \) (using "diagonalization") that should be in the set but is not equal to any of the \(f_i \)'s.
Diagonalization

<table>
<thead>
<tr>
<th>(f_i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0)</td>
<td>4</td>
<td>14</td>
<td>34</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(f_1)</td>
<td>55</td>
<td>32</td>
<td>777</td>
<td>3</td>
<td>21</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>(f_2)</td>
<td>90</td>
<td>2</td>
<td>5</td>
<td>21</td>
<td>66</td>
<td>901</td>
<td>2</td>
</tr>
<tr>
<td>(f_3)</td>
<td>4</td>
<td>44</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>(f_4)</td>
<td>80</td>
<td>56</td>
<td>32</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>(f_5)</td>
<td>43</td>
<td>345</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(f_6)</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>
Diagonalization

- Define the function: $f^d(n) = f_n(n) + 1$
- In the example:
 - $f^d(0) = 4 + 1 = 5$, so $f^d \neq f_0$
 - $f^d(1) = 32 + 1 = 33$, so $f^d \neq f_1$
 - $f^d(2) = 5 + 1 = 6$, so $f^d \neq f_2$
 - $f^d(3) = 7 + 1 = 8$, so $f^d \neq f_3$
 - $f^d(4) = 3 + 1 = 4$, so $f^d \neq f_4$
 - etc.
Uncomputable Functions Exist!

Consider all programs (in our favorite model) that compute functions in $\mathbb{N}^\mathbb{N}$.

The set $\mathbb{N}^\mathbb{N}$ is uncountable, hence cannot be enumerated.

However, the set of all programs can be enumerated (i.e., is countable).

Thus there must exist some functions in $\mathbb{N}^\mathbb{N}$ that cannot be computed by a program.
Set of All Programs is Countable

- Fix your computational model (e.g., programming language).
- Every program is finite in length.
- For every integer n, there is a finite number of programs of length n.
- Enumerate programs of length 1, then programs of length 2, then programs of length 3, etc.
Uncomputable Functions

• Previous proof just showed there must exist uncomputable functions
• Did not exhibit any particular uncomputable function
• Maybe the functions that are uncomputable are uninteresting...
• But actually there are some VERY interesting functions (problems) that are uncomputable
The Halting Problem
The Function Halt

- Consider this function, called Halt:
 - input: code for a program P and an input X for P
 - output: 1 if P terminates (halts) when executed on input X, and 0 if P doesn’t terminate (goes into an infinite loop) when executed on input X
- By the way, a compiler is a program that takes as input the code for another program
- Note that the input X to P could be (the code for) P itself
 - in the compiler example, a compiler can be run on its own code
The Function Halt

- We can view Halt as a function from \(\mathbb{N} \) to \(\mathbb{N} \):
 - \(P \) and \(X \) can be represented in ASCII, which is a string of bits.
 - This string of bits can also be interpreted as a natural number.
- The function Halt would be a useful diagnostic tool in debugging programs.
Halt is Uncomputable

- Suppose in contradiction there is a program \(P_{\text{halt}} \) that computes Halt.
- Use \(P_{\text{halt}} \) as a subroutine in another program, \(P_{\text{self}} \).
- Description of \(P_{\text{self}} \):
 - input: code for any program \(P \)
 - constructs pair \((P,P)\) and calls \(P_{\text{halt}} \) on \((P,P)\)
 - returns same answer as \(P_{\text{halt}} \)
\(P_{\text{self}} \)

- \(P \)
- \((P, P) \)
- \(P_{\text{halt}} \)

0 if \(P \) halts on input \(P \)

1 if \(P \) doesn't halt on input \(P \)
Halt is Uncomputable

- Now use P_{self} as a subroutine inside another program P_{diag}.

Description of P_{diag}:
- input: code for any program P
- call P_{self} on input P
- if P_{self} returns 1 then go into an infinite loop
- if P_{self} returns 0 then output 0

- P_{diag} on input P does the opposite of what program P does on input P
If \(P \) halts on input \(P \), \(P_{\text{diag}} \) outputs 1. If \(P \) doesn't halt on input \(P \), \(P_{\text{diag}} \) outputs 0.
Halt is Uncomputable

- Review behavior of P_{diag} on input P:
 - If P halts when executed on input P, then P_{diag} goes into an infinite loop
 - If P does not halt when executed on input P, then P_{diag} halts (and outputs 0)
- What happens if P_{diag} is given its own code as input?
 It either halts or doesn't.
 - If P_{diag} halts when executed on input P_{diag}, then P_{diag} goes into an infinite loop
 - If P_{diag} doesn't halt when executed on input P_{diag}, then P_{diag} halts

Contradiction
Halt is Uncomputable

• What went wrong?
• Our assumption that there is an algorithm to compute Halt was incorrect.
• So there is no algorithm that can correctly determine if an arbitrary program halts on an arbitrary input.
Undecidability
Undecidability

- The analog of an uncomputable function is an **undecidable set**.
- The theory of what can and cannot be computed focuses on identifying sets of strings:
 - an algorithm is required to "decide" if a given input string is in the set of interest
 - similar to deciding if the input to some NP-complete problem is a YES or NO instance
Undecidability

- Recall that a (formal) language is a set of strings, assuming some encoding.
- Analogous to the function Halt is the set H of all strings that encode a program P and an input X such that P halts when executed on X.
- There is no algorithm that can correctly identify for every string whether it belongs to H or not.
More Reductions

• For NP-completeness, we were concerned with (time) complexity of problems:
 • reduction from P1 to P2 had to be fast (polynomial time)

• Now we are concerned with computability of problems:
 • reduction from P1 to P2 just needs to be computable, don't care how slow it is
Many-One Reduction

all strings over L_1's alphabet

L_1

L_2

all strings over L_2's alphabet

f
Many-One Reduction

- YES instances map to YES instances
- NO instances map to NO instances
- computable (doesn't matter how slow)
- Notation: $L_1 \leq_m L_2$
- Think: L_2 is at least as hard to compute as L_1
Many-One Reduction Theorem

Theorem: If $L_1 \leq_m L_2$ and L_2 is computable, then L_1 is computable.

Proof: Let f be the many-one reduction from L_1 to L_2. Let A_2 be an algorithm for L_2. Here is an algorithm A_1 for L_1.

- **input:** x
- **compute** $f(x)$
- **run** A_2 on input $f(x)$
Implication

• If there is no algorithm for L_1, then there is no algorithm for L_2.
• In other words, if L_1 is undecidable, then L_2 is also undecidable.
• Pay attention to the direction!
Example of a Reduction

- Consider the language L_{NE} consisting of all strings that encode a program that halts (does not go into an infinite loop) on at least one input.
- Use a reduction to show that L_{NE} is not decidable:
 - Show some known undecidable language $\leq_m L_{NE}$.
 - Our only choice for the known undecidable language is H (the language corresponding to the halting problem).
 - So show $H \leq_m L_{NE}$.
Example of a Reduction

- Given an arbitrary \(H \) input (encoding of a program \(P \) and an input \(X \) for \(P \)), compute an \(L_{\text{NE}} \) input (encoding of a program \(P' \))
 - such that \(P \) halts on input \(X \) if and only if \(P' \) halts on at least one input.
- Construction consists of writing code to describe \(P' \).
- What should \(P' \) do? It’s allowed to use \(P \) and \(X \)
Example of a Reduction

• The code for P' does this:
 • input X'
 • ignore X'
 • call program P on input X
 • if P halts on input X then return whatever P returns

• How does P' behave?
 • If P halts on X, then P' halts on every input
 • If P does not halt on X, then P' does not halt on any input
Example of a Reduction

- Thus if (P, X) is a YES input for H (meaning P halts on input X), then P' is a YES input for L_{NE} (meaning P' halts on at least one input).
- Similarly, if (P, X) is NO input for H (meaning P does not halt on input X), then P' is a NO input for L_{NE} (meaning P' does not halt on even one input).
- Since H is undecidable, and we showed $H \leq_m L_{\text{NE}}$, L_{NE} is also undecidable.
Generalizing Such Reductions

• There is a way to generalize the reduction we just did, to show that lots of other languages that describe properties of programs are also undecidable.

• Focus just on programs that accept languages (sets of strings):
 • I.e., programs that say YES or NO about their inputs
 • Ex: a compiler tells you YES or NO whether its input is syntactically correct
Properties About Programs

- Define a property about programs to be a set of strings that encode some programs.
 - The "property" corresponds to whatever it is that all the programs have in common
- Example:
 - Program terminates in 10 steps on input y
 - Program never goes into an infinite loop
 - Program accepts a finite number of strings
 - Program contains 15 variables
 - Program accepts 0 or more inputs
Functional Properties

• A property about programs is called **functional** if it just refers to the language accepted by the program and not about the specific code of the program
 • Program terminates in 10 steps on input y (n.f.)
 • Program never goes into an infinite loop (f.)
 • Program accepts a finite number of strings (f.)
 • Program contains 15 variables (n.f.)
Nontrivial Properties

- A functional property about programs is **nontrivial** if some programs have the property and some do not
- Example of nontrivial programs:
 - Program never goes into an infinite loop
 - Program accepts a finite number of strings
- Example of a trivial program:
 - Program accepts 0 or more inputs
Rice's Theorem

• Every nontrivial (functional) property about programs is undecidable.
• The proof is a generalization of the reduction shown earlier.
• Very powerful and useful theorem:
 • To show that some property is undecidable, only need to show that is nontrivial and functional, then appeal to Rice’s Theorem
Applying Rice's Theorem

- Consider the property "program accepts a finite number of strings".
- This property is functional:
 - it is about the language accepted by the program and not the details of the code of the program
- This property is nontrivial:
 - Some programs accept a finite number of strings (for instance, the program that accepts no input)
 - Some accept an infinite number (for instance, the program that accepts every input)
- By Rice's theorem, the property is undecidable.
Implications of Undecidable Program Property

- It is not possible to design an algorithm (write a program) that can analyze any input program and decide whether the input program satisfies the property!
- Essentially all you can do is simulate the input program and see how it behaves
 - but this leaves you vulnerable to an infinite loop
- Thought question: Then how can compilers be correct?