Undecidability

Andreas Klappenecker
[based on slides by Prof. Welch]

Sources

Theory of Computing, A Gentle Introduction, by E. Kinber and C. Smith, Prentice-Hall, 2001
Automata Theory, Languages and Computation, 3rd Ed., by J. Hopcroft, R. Motwani, and J. Ullman, 2007

Understanding Limits of Computing

So far, we have studied how efficiently various problems can be solved.
There has been no question as to whether it is possible to solve the problem
If we want to explore the boundary between what can and what cannot be computed, we need a model of computation

Models of Computation

Need a way to clearly and unambiguously specify how computation takes place

Many different mathematical models have been proposed:

Turing Machines
Random Access Machines

They have all been found to be equivalent!

Church-Turing Thesis

- Conjecture: Anything we reasonably think of as an algorithm can be computed by a Turing Machine (specific formal model).
- So we might as well think in our favorite programming language, or in pseudocode.
Frees us from the tedium of having to provide boring details
- in principle, pseudocode descriptions can be converted into some appropriate formal model

Short Review of some Basic Set Theory Concepts

Some Notation

If A and B are sets, then the set of all functions from A to B is denoted by B^{A}.

If A is a set, then $P(A)$ denotes the power set, i.e., $P(A)$ is the set of all subsets of A.

Cardinality

Two sets A and B are said to have the same cardinality if and only if there exists a bijective function from A onto B.
[A function is bijective if it is one-to-one and onto]

We write $|A|=|B|$ if A and B have the same cardinality.
[Note that $|A|=|B|$ says that A and B have the same number of elements, even if we do not yet know about numbers!]

How Set Theorists Count

Set theorists count
$0=\{ \} \quad / /$ the empty set exists by axiom This set
contains no elements
$1=\{0\}=\{\{ \}\} \quad / /$ form the set containing $\}$ This
set contains one element
$2=\{0,1\}=\{\{ \},\{\{ \}\}\}$
set contains two elements
Keep including all previously created sets as elements of the next set.

Example

Theorem: $|P(X)|=\left|2^{x}\right|$

Proof: The bijection from $P(X)$ onto 2^{X} is given by the characteristic function. q.e.d.
Example: $X=\{a, b\}$
$\varnothing \quad$ corresponds to $\quad f(a)=0, f(b)=0$
\{a\} corresponds to $f(a)=1, f(b)=0$
\{b\} corresponds to $\quad f(a)=0, f(b)=1$
$\{a, b\}$ corresponds to $\quad f(a)=1, f(b)=1$

More About Cardinality

Let A and B be sets.

We write $|A|<=|B|$ if and only if there exists an injective function from A to B.

We write $|A|<|B|$ if and only if there exist an injective function from A to B, but no bijection exists from A to B.

Cardinality

Cantor's Theorem: Let S be any set. Then $|S|<|P(S)|$.

Proof: Since the function i from S to $P(S)$ given by $i(s)=$ $\{s\}$ is injective, we have $|S|<=|P(S)|$.
Claim: There does not exist any function from S to $P(S)$ that is surjective.
Indeed, $T=\{s \in S: s \notin f(s)\}$ is not contained in $f(S)$.
An element s in S is either contained in T or not.
If $s \in T$, then $s \notin f(s)$ by definition of T. Thus, $T \neq f(s)$.

- If $s \notin T$, then $s \in f(s)$ by definition of T. Thus, $T \neq f(s)$.

Therefore, f is not surjective. This proves the claim.

Uncountable Sets and Uncomputable Functions

Countable Sets

Let N be the set of natural numbers.
A set X is called countable if and only if there exists a surjective function from N onto X.

Thus, finite sets are countable, N is countable, but the set of real numbers is not countable.

An Uncountable Set

Theorem: The $\operatorname{set} N^{N}=\{f \mid f: N->N\}$ is not countable.

Proof: We have $|N|<|P(N)|$ by Cantor's theorem. Since $|P(N)|=\left|2^{N}\right|$ and 2^{N} is a subset of N^{N} we can conclude that

$$
|N|<|P(N)|=\left|2^{N}\right|<=\left|N^{N}\right| \text {. q.e.d. }
$$

> Alternate Proof:
> The Set N^{N} is Uncountable

> Seeking a contradiction, we assume that the set of functions from N to N is countable.
> Let the functions in the set be $f_{0}, f_{1}, f_{2}, \ldots$
> We will obtain our contradiction by defining a function f^{d} (using "diagonalization") that should be in the set but is not equal to any of the f_{i} 's.

Diagonalization

	0	1	2	3	4	5	6
f_{0}	4	14	34	6	0	1	2
f_{1}	55	32	777	3	21	12	8
f_{2}	90	2	5	21	66	901	2
f_{3}	4	44	4	7	8	34	28
f_{4}	80	56	32	12	3	6	7
f_{5}	43	345	12	7	3	1	0
f_{6}	0	3	6	9	12	15	18

Diagonalization

Define the function: $f^{d}(n)=f_{n}(n)+1$
In the example:
$f^{d}(0)=4+1=5$, so $f^{d} \neq f_{0}$
$f^{d}(1)=32+1=33$, so $f^{d} \neq f_{1}$
$f^{d}(2)=5+1=6$, so $f^{d} \neq f_{2}$
$f^{d}(3)=7+1=8$, so $f^{d} \neq f_{3}$
$f^{d}(4)=3+1=4$, so $f^{d} \neq f_{4}$
etc.

Uncomputable Functions Exist!

Consider all programs (in our favorite model) that compute functions in N^{N}.

The set N^{N} is uncountable, hence cannot be enumerated.

However, the set of all programs can be enumerated (i.e., is countable).
Thus there must exist some functions in N^{N} that cannot be computed by a program.

Set of All Programs is Countable

Fix your computational model (e.g., programming language).

- Every program is finite in length.
- For every integer n, there is a finite number of programs of length n.
Enumerate programs of length 1, then programs of length 2, then programs of length 3, etc.

Uncomputable Functions

Previous proof just showed there must exist uncomputable functions

- Did not exhibit any particular uncomputable function

Maybe the functions that are uncomputable are uninteresting...
But actually there are some VERY interesting functions (problems) that are uncomputable

The Halting Problem

The Function Halt

Consider this function, called Halt:

- input: code for a program P and an input X for P
- output: 1 if P terminates (halts) when executed on input X, and 0 if P doesn't terminate (goes into an infinite loop) when executed on input X
By the way, a compiler is a program that takes as input the code for another program
Note that the input X to P could be (the code for) P itself in the compiler example, a compiler can be run on its own code

The Function Halt

We can view Halt as a function from N to N :

- P and X can be represented in ASCII, which is a string of bits.
This string of bits can also be interpreted as a natural number.
The function Halt would be a useful diagnostic tool in debugging programs

Halt is Uncomputable

Suppose in contradiction there is a program $P_{\text {halt }}$ that computes Halt.
Use $P_{\text {halt }}$ as a subroutine in another program, $P_{\text {self. }}$.
Description of $P_{\text {self }}$:
input: code for any program P
constructs pair (P, P) and calls $P_{\text {halt }}$ on (P, P)
returns same answer as $P_{\text {halt }}$

Halt is Uncomputable

Now use $P_{\text {self }}$ as a subroutine inside another program $P_{\text {diag }}$.
Description of $P_{\text {diag }}$:

- input: code for any program P
- call $P_{\text {self }}$ on input P
- if $P_{\text {self }}$ returns 1 then go into an infinite loop
- if $P_{\text {self }}$ returns 0 then output 0
$P_{\text {diag }}$ on input P does the opposite of what program P does on input P

$P_{\text {diag }}$

Halt is Uncomputable

Review behavior of $P_{\text {diag }}$ on input P :

- If P halts when executed on input P, then $P_{\text {diag }}$ goes into an infinite loop
If P does not halt when executed on input P, then $P_{\text {diag }}$ halts (and outputs 0)
What happens if $P_{\text {diag }}$ is given its own code as input? It either halts or doesn' \dagger.
- If $P_{\text {diag }}$ halts when executed on input $P_{\text {diag }}$ then $P_{\text {diag }}$ goes into an infinite loop
- If $P_{\text {diag }}$ doesn' \dagger halt when executed on input $P_{\text {diag, }}$, then $P_{\text {diag }}$ halts
Contradiction

Halt is Uncomputable

What went wrong?
Our assumption that there is an algorithm to compute Halt was incorrect.

So there is no algorithm that can correctly determine if an arbitrary program halts on an arbitrary input.

Undecidability

Undecidability

The analog of an uncomputable function is an undecidable set.
The theory of what can and cannot be computed focuses on identifying sets of strings:
an algorithm is required to "decide" if a given input string is in the set of interest
similar to deciding if the input to some NPcomplete problem is a YES or NO instance

Undecidability

Recall that a (formal) language is a set of strings, assuming some encoding.
Analogous to the function Halt is the set H of all strings that encode a program P and an input X such that P halts when executed on X.
There is no algorithm that can correctly identify for every string whether it belongs to H or not.

More Reductions

For NP-completeness, we were concerned with (time) complexity of probems:

- reduction from P1 to P2 had to be fast (polynomial time)

Now we are concerned with computability of problems:
reduction from P1 to P2 just needs to be computable, don't care how slow it is

Many-One Reduction

Many-One Reduction

YES instances map to YES instances
NO instances map to NO instances
computable (doesn't matter how slow)
Notation: $L_{1} \leq_{m} L_{2}$
Think: L_{2} is at least as hard to compute as L_{1}

Many-One Reduction Theorem

Theorem: If $L_{1} \leq_{m} L_{2}$ and L_{2} is computable, then L_{1} is computable.
Proof: Let f be the many-one reduction from L_{1} to L_{2}. Let A_{2} be an algorithm for L_{2}. Here is an algorithm A_{1} for L_{1}.
input: x
compute $f(x)$
run A_{2} on input $f(x)$

Implication

If there is no algorithm for L_{1}, then there is no algorithm for L_{2}.

- In other words, if L_{1} is undecidable, then L_{2} is also undecidable.

Pay attention to the direction!

Example of a Reduction

Consider the language $L_{N E}$ consisting of all strings that encode a program that halts (does not go into an infinite loop) on at least one input.
Use a reduction to show that $L_{N E}$ is not decidable:

Show some known undecidable language $\leq_{m} L_{N E}$.

- Our only choice for the known undecidable language is H (the language corresponding to the halting problem)

So show $H \leq_{m} L_{N E}$.

Example of a Reduction

Given an arbitrary H input (encoding of a program P and an input X for P), compute an $L_{N E}$ input (encoding of a program P^{\prime})
such that P halts on input X if and only if P^{\prime} halts on at least one input.
Construction consists of writing code to describe P^{\prime}.

What should P^{\prime} do? It's allowed to use P and X

Example of a Reduction

The code for P^{\prime} does this:
input X ':
ignore X^{\prime}
call program P on input X

- if P halts on input X then return whatever P returns

How does P^{\prime} behave?
If P halts on X, then P^{\prime} halts on every input
If P does not halt on X, then P^{\prime} does not halt on any input

Example of a Reduction

Thus if (P, X) is a YES input for H (meaning P halts on input X), then P^{\prime} is a YES input for $L_{N E}$ (meaning P^{\prime} halts on at least one input).

Similarly, if (P, X) is NO input for H (meaning P does not halt on input X), then P^{\prime} is a NO input for $L_{\text {NE }}$ (meaning P^{\prime} does not halt on even one input)

Since H is undecidable, and we showed $H \leq_{m} L_{N E}$, $L_{N E}$ is also undecidable.

Generalizing Such Reductions

There is a way to generalize the reduction we just did, to show that lots of other languages that describe properties of programs are also undecidable.

Focus just on programs that accept languages (sets of strings):
I.e., programs that say YES or NO about their inputs

Ex: a compiler tells you YES or NO whether its input is syntactically correct

Properties About Programs

- Define a property about programs to be a set of strings that encode some programs.
The "property" corresponds to whatever it is that all the programs have in common
Example:
Program terminates in 10 steps on input y
Program never goes into an infinite loop
- Program accepts a finite number of strings
- Program contains 15 variables
- Program accepts 0 or more inputs

Functional Properties

A property about programs is called functional if it just refers to the language accepted by the program and not about the specific code of the program
Program terminates in 10 steps on inputy (n.f.)

Program never goes into an infinite loop (f.)

- Program accepts a finite number of strings (f.)

Program contains 15 variables (n.f.)

Nontrivial Properties

A functional property about programs is nontrivial if some programs have the property and some do not
Example of nontrivial programs:
Program never goes into an infinite loop
Program accepts a finite number of strings
Example of a trivial program:
Program accepts 0 or more inputs

Rice's Theorem

- Every nontrivial (functional) property about programs is undecidable.

The proof is a generalization of the reduction shown earlier.

- Very powerful and useful theorem:

To show that some property is undecidable, only need to show that is nontrivial and functional, then appeal to Rice's Theorem

Applying Rice's Theorem

Consider the property "program accepts a finite number of strings".
This property is functional:

- it is about the language accepted by the program and not the details of the code of the program
This property is nontrivial:
Some programs accept a finite number of strings (for instance, the program that accepts no input)
some accept an infinite number (for instance, the program that accepts every input)
By Rice's theorem, the property is undecidable.

Implications of Undecidable Program Property

It is not possible to design an algorithm (write a program) that can analyze any input program and decide whether the input program satisfies the property!
Essentially all you can do is simulate the input program and see how it behaves
but this leaves you vulnerable to an infinite loop
Thought question: Then how can compilers be correct?

