Problem Set 1

CPSC 411 Analysis of Algorithms
Andreas Klappenecker

The assignment is due next Friday, Sep 9, 2011, before class.

Exercise 1 (10 points). Use the definition of Big-Oh notation to prove that

$$
n\lfloor\log n\rfloor=O\left(n^{2}\right) .
$$

Here $\lfloor x\rfloor$ denotes the floor function that yields the largest integer $\leq x$ as a value.

Exercise 2 (10 points). Prove that

$$
n\lfloor\log n\rfloor=\Theta(n \log n) .
$$

Exercise 3 (10 points). Prove or disprove: $2^{n} \log n=\Omega\left(e^{n}\right)$.
Exercise 4 (20 points). Show that for fixed k, we have

$$
\binom{n}{k}=\frac{n^{k}}{k!}+O\left(n^{k-1}\right) \quad \text { and } \quad\binom{n+k}{k}=\frac{n^{k}}{k!}+O\left(n^{k-1}\right),
$$

where $\binom{n}{k}=n(n-1)(n-2) \cdots(n-k+1) / k$! is the binomial coefficient.
Exercise 5 (20 points). Suppose that f and g are function from the natural numbers to the positive real numbers. Suppose that the limit $\lim _{n \rightarrow \infty} f(n) / g(n)$ exists and is positive. Prove or disprove that $O(f)=O(g)$.

Exercise 6 (10 points). Suppose that it is known that each of the items in an array a[1..n] has one of two distinct values. Give a sorting algorithm for such arrays that takes time proportional to n.

Exercise 7 (20 points). Assume that the running time of Mergesort is $c n \log n+d n$, where c and d are machine-dependent constants. Show that if we implement the program on a particular machine and observe a running time t_{n} for some value of n, then we can accurately estimate the running time for $2 n$ by $2 t_{n}(1+1 / \log n)$, independent of the machine.

