Problem Set 3

CPSC 411 Analysis of Algorithms
Andreas Klappenecker
The assignment is due next Friday, Sep 23, 2011, before class.
Exercise 1 (10 points). Find the smallest matroid containing the sets $\{a, b\}$ and $\{b, c\}$.

Exercise 2 (20 points). Let a and b be positive integers. Let S be a finite nonempty set, A and B disjoint subsets of S such that $S=A \cup B$. Let $F=\{C \subseteq S| | C \cap A \mid \leq a$ and $|C \cap B| \leq b\}$. Show that (S, F) is a matroid.

Exercise 3 (10 points). If the sets A and B in the previous exercise are not disjoint, can we still always conclude that (S, F) is a matroid?
Exercise 4 (20 points). Keep the notation of exercise 2. Let $a=2$ and $b=2$. Let $A=\{1,2,3,4\}, B=\{5,6,7,8\}$, and $S=A \cup B$. Let $w: S \rightarrow \mathbf{R}$ be the weight function $w(x)=x$ if x is even, and $w(x)=2 x$ if x is odd.
(a) Explicitly write down the matroid.
(b) Write down all the steps of the algorithm Greedy $((S, F), w)$
(c) What is the result returned by the algorithm?

Exercise 5 (10 points). Suppose you have a set of denomiations with values $1,5,7$. Does the Greedy algorithm to give change always return the least possible number of coins? Prove the result or give the smallest possible counter example (smallest amount C).

Exercise 6 (10 points). Multiply the matrices

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 4 & 4
\end{array}\right)
$$

Do this by hand. Explain how one can obtain the entries of the resulting matrix.

Exercise 7 (20 points). Suppose that you have a 5×2 matrix A_{1}, $a 2 \times 10$ matrix A_{2}, a 10×25 matrix A_{3}, and a 25×10 matrix A_{4}. Determine the minimal number of scalar multiplications that are needed to form the product

$$
A_{1} A_{2} A_{3} A_{4}
$$

using the algorithm given in the lecture. Do this exercise by hand rather than on the computer. Show your work!

