Problem Set 4

CSCE 411
Andreas Klappenecker
The assignment is due Friday, Sep 30, 2011, before class.
Exercise 1 (15 points). Solve Exercise 15.2-1 on page 378 of our textbook. Use the algorithm given in class. Show the arrays, and explain how the solution is derived from these arrays.

Exercise 2 (15 points). Solve Exercise 15.2-2 on page 378.
Exercise 3 (15 points). Solve Exercise 15.4-1 on page 396. Show your work!

Exercise 4 (15 points). Solve Exercise 15.4-2 on page 396.
Exercise 5 (20 points). Solve Exercise 15.4-5 on page 397.
Exercise 6 (20 points). Solve Problem 15-2 on page 405. [Hint: Suppose the sequence is represented by an array s. Consider the sub-arrays $s[i . . j]$. Notice that $s[i, j]$ contains a palindrome of length ≥ 2 when $s[i]=s[j]$. Let $l[i, j]$ denote the length of a maximum length palindrom in $s[i, j]$. Relate $l[i, j]$ to subproblems.]

