Problem Set 9

CSCE 411
Andreas Klappenecker

The assignment is due on Friday, Dec 2, 2011, before class.

Exercise 1 (20 points). Improve your implementation of comparative Sudoku. You can use a refinement of backtracking, some partial solving using deduction followed by some other method, a constraint based solver, or some other method (or combination of methods). You are allowed to use C, $C++$, C\#, Java, or Ruby in your implementation.

Please describe briefly the main algorithmic ideas behind your new comparative Sudoku solver.

Exercise 2 (20 points). Print out your source code. Make sure that it is well-documented.

Exercise 3 (20 points). Solve the challenge problems that will be posted. Give a table that compares the time of your solver from Problem Set 7 with the solver from this problem set. Include a printout of the solutions produced by your new comparative Sudoku solver.

Exercise 4. Let ϕ be a boolean formula in 3-CNF. An \neq-assignment to the variables of ϕ is one where each clause contains two literals with unequal truth values. In other words, an \neq-assignment satisfies ϕ without assigning three true literals in any clause.
(a) Show that the negation of $a \neq$-assignment to ϕ is also $a \neq$-assignment.
(b) Let $\neq S A T$ be the collection of boolean formulas in 3-CNF that have an \neq-assignment. Show that $3-S A T \leq_{P} \neq S A T$, and that $\neq S A T$ is NP-complete. [Hint: Replace each clause $\left(y_{1} \vee y_{2} \vee y_{3}\right)$ by two clauses $\left(y_{1} \vee y_{2} \vee z_{i}\right)$ and $\left(\neg z_{i} \vee y_{3} \vee b\right)$, where z_{i} is a new varable for each clause and b is a single additional new variable.]

Exercise 5 (20 points). Problem 34-3 d,e,f (that is, prove that 3-COLOR is $N P$-complete using the reduction 3-SAT $\leq_{P} 3$-COLOR) on page 1103 of our textbook.

