Problem Set 9 CSCE 411 Andreas Klappenecker

The assignment is due on Friday, Dec 2, 2011, before class.

Exercise 1 (20 points). Improve your implementation of comparative Sudoku. You can use a refinement of backtracking, some partial solving using deduction followed by some other method, a constraint based solver, or some other method (or combination of methods). You are allowed to use C, C++, C#, Java, or Ruby in your implementation.

Please describe briefly the main algorithmic ideas behind your new comparative Sudoku solver.

Exercise 2 (20 points). Print out your source code. Make sure that it is well-documented.

Exercise 3 (20 points). Solve the challenge problems that will be posted. Give a table that compares the time of your solver from Problem Set 7 with the solver from this problem set. Include a printout of the solutions produced by your new comparative Sudoku solver.

Exercise 4. Let ϕ be a boolean formula in 3-CNF. An \neq -assignment to the variables of ϕ is one where each clause contains two literals with unequal truth values. In other words, an \neq -assignment satisfies ϕ without assigning three true literals in any clause.

- (a) Show that the negation of $a \neq$ -assignment to ϕ is also $a \neq$ -assignment.
- (b) Let \neq SAT be the collection of boolean formulas in 3-CNF that have an \neq -assignment. Show that $3 - SAT \leq_P \neq SAT$, and that $\neq SAT$ is NP-complete. [Hint: Replace each clause $(y_1 \lor y_2 \lor y_3)$ by two clauses $(y_1 \lor y_2 \lor z_i)$ and $(\neg z_i \lor y_3 \lor b)$, where z_i is a new variable for each clause and b is a single additional new variable.]

Exercise 5 (20 points). Problem 34-3 d, e, f (that is, prove that 3-COLOR is NP-complete using the reduction $3\text{-}SAT \leq_P 3\text{-}COLOR$) on page 1103 of our textbook.