

# SYLLABUS

Course title and number Term (e.g., Fall 200X) Meeting times and location CSCE 411 Design and Analysis of Algorithms Fall 2011 MWF 3:00-3:50pm HRBB 113

#### **Course Description and Prerequisites**

The course focuses on the study of computer algorithms, in particular design paradigms of algorithms, the analysis of time and space requirements of algorithms, and the correctness of algorithms. Furthermore, the course studies NP-completeness and undecidability.

Prerequisites: CSCE 221 and CSCE 315

## Learning Outcomes or Course Objectives

At the end of the semester, you should:

- be familiar with fundamental algorithms and algorithmic techniques;
- given a particular application, be able to decide which algorithm among a set of choices is best;
- be able to prove correctness and analyze running time and space complexity of a given algorithm;
- be able to design efficient algorithms for new situations using the techniques learned;
- be able to prove that a problem is NP-complete using reduction and understand the implications;
- understand the notion of undecidability, know that some problems are undecidable, and comprehend the implications.

#### **Instructor Information**

| Name             | Prof. Dr. Andreas Klappenecker   |
|------------------|----------------------------------|
| Telephone number | 979 458 0608                     |
| Email address    | klappi@cse.tamu.edu              |
| Office hours     | MT 2:00-2:50pm or by appointment |
| Office location  | HRBB 509B                        |

#### **Textbook and/or Resource Material**

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 3rd edition, The MIT Press, 2009.

## **Grading Policies**

Your grade will be based on these components:

- Quizzes: 10% (your lowest quiz grade will be dropped)
- Homeworks: 40% (written problems and programming assignments)
- Exams: 45% (one midterm worth 20% and one final exam worth 25%)
- Culture reports 5% (5 reports, see course webpage for deadlines)

The course grades will be assigned according to the scale:

A (90-100 % of total points), B (80-89%), C (70-79%), D (60-69%), F (0-59%)

A curve might be applied if the course average is below expectation.

Grades must be earned and are not negotiable.

## Course Topics, Calendar of Activities, Major Assignment Dates

The midterm is exam is tentatively scheduled for Monday, October 10, in class. The final exam is scheduled for Wednesday, December 14, 8:00am.

A tentative schedule is given below:

| Dates    | Торіс                         | Required Reading |
|----------|-------------------------------|------------------|
| M Aug 29 | Introduction                  |                  |
| W Aug 31 | Sorting Lower Bound           |                  |
| F Sep 2  | Sorting Lower Bound           |                  |
| M Sep 5  | Divide and Conquer Algorithms |                  |
| W Sep 7  | Divide and Conquer Algorithms |                  |
| F Sep 9  | Divide and Conquer Algorithms |                  |
| M Sep 12 | Greedy Algorithms             |                  |
| W Sep 14 | Greedy Algorithms             |                  |
| F Sep 16 | Greedy Algorithms             |                  |
| M Sep 19 | Matroids                      |                  |
| W Sep 21 | Matroids                      |                  |
| F Sep 23 | Matroids                      |                  |
| M Sep 26 | Dynamic Programming           |                  |
| W Sep 28 | Dynamic Programming           |                  |
| F Sep 30 | Dynamic Programming           |                  |
| M Oct 3  | Amortized Analysis            |                  |
| W Oct 5  | Amortized Analysis            |                  |
| F Oct 7  | Amortized Analysis            |                  |
| M Oct 10 | Midterm Exam                  |                  |
| W Oct 12 | Graph Algorithms              |                  |
| F Oct 14 | Graph Algorithms              |                  |
| M Oct 17 | Graph Algorithms              |                  |
| M Oct 24 | Graph Algorithms              |                  |
| W Oct 26 | Graph Algorithms              |                  |
| F Oct 28 | Graph Algorithms              |                  |
| M Oct 31 | Randomized Algorithms         |                  |
| W Nov 2  | Randomized Algorithms         |                  |
| F Nov 4  | Randomized Algorithms         |                  |
| M Nov 7  | Randomized Algorithms         |                  |
| W Nov 9  | Randomized Algorithms         |                  |
| F Nov 11 | Randomized Algorithms         |                  |
| M Nov 14 | NP-Completeness               |                  |
| W Nov 16 | NP-Completeness               |                  |
| F Nov 18 | NP-Completeness               |                  |
| M Nov 21 | NP-Completeness               |                  |
| W Nov 23 | NP-Completeness               |                  |
| F Nov 25 | No class                      |                  |
| M Nov 28 | Undecidability                |                  |
|          | 5                             |                  |

W Nov 30UndecidabilityF Dec 2UndecidabilityM Dec 5 (A&M: F Dec 5) Review

## **Other Pertinent Course Information**

The course webpage is <u>http://faculty.cs.tamu.edu/klappi/csce411-f11/index.html</u> You will find homework assignments, a current class schedule, and other information on that page

## Americans with Disabilities Act (ADA)

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact Disability Services, in Cain Hall, Room B118, or call 845-1637. For additional information visit <u>http://disability.tamu.edu</u>

## **Academic Integrity**

For additional information please visit: http://aggiehonor.tamu.edu

"An Aggie does not lie, cheat, or steal, or tolerate those who do."