CSCE 411

Design and Analysis of Algorithms

Andreas Klappenecker

Motivation

Motivation

In 2004, a mysterious billboard showed up

- in the Silicon Valley, CA
- in Cambridge, MA
- in Seattle, WA
- in Austin, TX
and perhaps a few other places. The question on the billboard quickly spread around the world through numerous blogs. The next slide shows the billboard.

Recall Euler's Number e

$\approx 2.718281828459045235 \ldots$

Billboard Question

So the billboard question essentially asked: Given that $e=$ 2.718281828459045235

Is 2718281828 prime?
Is 7182818284 prime?

The first affirmative answer gives the name of the website

Strategy

1. Compute the digits of e
2. $\mathrm{i}:=0$
3. while true do \{
4. Extract 10 digit number p at position i
5. return p if p is prime
6. $i:=i+1$
7. \}

What needs to be solved?

Essentially, two questions need to be solved:

- How can we create the digits of e ?
- How can we test whether an integer is prime?

Computing the Digits of e

First Approach: Use the fact that
$\left(1+\frac{1}{n}\right)^{n} \leq e<\left(1+\frac{1}{n}\right)^{n+1}$

Drawback: Needs rational arithmetic with long rationals
Too much coding unless a library is used.

Extracting Digits of e

Extracting Digits of e

We can extract the digits of e in base 10

Extracting Digits of e

We can extract the digits of e in base 10 by

Extracting Digits of e

We can extract the digits of e in base 10 by $d[0]=$ floor (e);
(equals 2)

Extracting Digits of e

We can extract the digits of e in base 10 by d[0] = floor(e);
(equals 2)
e1 = 10* (e-d[0]);

Extracting Digits of e

We can extract the digits of e in base 10 by d[0] = floor(e);
(equals 2)
e1 = 10*(e-d[0]);
d[1] = floor(e1);
(equals 7)

Extracting Digits of e

We can extract the digits of e in base 10 by d[0] = floor(e);
(equals 2)
e1 = 10*(e-d[0]);
d[1] = floor(e1);
(equals 7)

Extracting Digits of e

We can extract the digits of e in base 10 by d[0] = floor(e);
(equals 2)
e1 = 10*(e-d[0]);
d[1] = floor(e1);
e2 = 10*(e1-d[1]);
$\mathrm{d}[2]=$ floor(e2);
(equals 7)
(equals 1)

Extracting Digits of e

We can extract the digits of e in base 10 by
d[0] = floor(e);
(equals 2)
e1 = 10* (e-d[0]);
d[1] = floor(e1);
(equals 7)
e2 = 10*(e1-d[1]);
d[2] = floor(e2);
(equals 1)
Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10.

Extracting Digits of e

We can extract the digits of e in base 10 by
d[0] = floor(e);
(equals 2)
e1 = 10* (e-d[0]);
d[1] = floor(e1);
(equals 7)
e2 = 10*(e1-d[1]);
d[2] = floor(e2);
(equals 1)
Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10.

Extracting Digits of e

We can extract the digits of e in base 10 by
$d[0]=$ floor (e);
(equals 2)
e1 = 10* (e-d[0]);
d[1] = floor(e1);
(equals 7)
e2 = 10*(e1-d[1]);
d[2] = floor(e2);
(equals 1)
Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10.

Idea: Use a mixed-radix representation that leads to a more regular pattern of the digits.

Mixed Radix Representation

$$
a_{0}+\frac{1}{2}\left(a_{1}+\frac{1}{3}\left(a_{2}+\frac{1}{4}\left(a_{3}+\frac{1}{5}\left(a_{4}+\frac{1}{6}\left(a_{5}+\cdots\right)\right)\right)\right)\right.
$$

The digits a_{i} are nonnegative integers.
The base of this representation is ($1 / 2,1 / 3,1 / 4, \ldots$).

The representation is called regular if $a_{i}<=i$ for $i>=1$.

Number is written as ($\left.a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right)$

Computing the Digits of e

Second approach:
$e=\sum_{k=0}^{\infty} \frac{1}{k!}$

$$
=1+\frac{1}{1}\left(1+\frac{1}{2}\left(1+\frac{1}{3}(1+\cdots)\right)\right)
$$

In mixed radix representation

$$
e=(2 ; 1,1,1,1, \ldots)
$$

where the digit 2 is due to the fact that both $\mathrm{k}=0$ and $\mathrm{k}=1$ contribute to the integral part.

Mixed Radix Representations

In mixed radix representation

$$
\left(a_{0} ; a_{1}, a_{2}, a_{3}, \ldots\right)
$$

a_{0} is the integer part and $\left(0 ; a_{1}, a_{2}, a_{3}, \ldots\right)$ the fractional part.
10 times the number is $\left(10 a_{0}, 10 a_{1}, 10 a_{2}, 10 a_{3}, \ldots\right)$, but the representation is not regular anymore. The first few digits might exceed their bound. Remember that the ith digit is supposed to be i or less.

- Renormalize the representation to make it regular again

The algorithm given for base 10 now becomes feasible; this is known as the spigot algorithm.

Spigot Algorithm

```
\#define \(N\) (1000) /* compute N-1 digits of e, by brainwagon@gmail.com */
\(\operatorname{main}(i, j, q)\{\)
    int A[N];
    printf("2.");
    for ( \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ; \mathrm{j}++\) )
        \(A[j]=1 ; \quad\) here the ith digit is represented by \(A[i-1]\), as the integral part is omitted
                                set all digits of nonintegral part to 1 .
    for ( \(i=0 ; i<N-2 ; i++)\{\)
        \(q=0\);
        for \((j=N-1 ; j>=0 ;)\{\)
            \(A[j]=10\) * \(A[j]+q\);
            \(q=A[j] /(j+2) ; \quad\) compute the amount that needs to be carried over to the next digit
                                    we divide by \(\mathrm{j}+2\), as regularity means here that \(A[\mathrm{j}]<=\mathrm{j}+1\)
            \(A[j] \%=(j+2)\); keep only the remainder so that the digit is regular
            j--:
        \}
        putchar(q + 48);
    \}
\}
```


Revisiting the Question

For mathematicians, the previous algorithm is natural, but it might be a challenge for computer scientists and computer engineers to come up with such a solution.
Could we get away with a simpler approach?

After all, the billboard only asks for the first prime in the 10 -digit numbers occurring in e.

Probability to be Prime

Let $\mathrm{pi}(x)=\#$ of primes less than or equal to x.
Pr [number with $<=10$ digits is prime]
= pi(99999 99999)/99999 99999
$=0.045$ (roughly)
Thus, the probability that none of the first k 10-digits numbers in e are prime is roughly
0.955^{k}
This probability rapidly approaches 0 for $k \rightarrow \infty$, so we need to compute just a few digits of e to find the first 10-digit prime number in e.

Google it!

Since we will likely need just few digits of Euler's number e, there is no need to reinvent the wheel.

We can simply

- google e or
- use the GNU bc calculator
to obtain a few hundred digits of e.

State of Affairs

We have provided two solutions to the question of generating the digits of e
An elegant solution using the mixedradix representation of e that led to the spigot algorithm

- A crafty solution that provides enough digits of e to solve the problem at hand.

How do we check Primality?

The second question concerning the testing of primality is simpler.

If a number x is not prime, then it has a divisor d in the range $2 \ll d<=\operatorname{sqrt}(x)$.
Trial divisions are fast enough here!
Simply check whether any number d in the range $2<=\mathrm{d}<100000$ divides a 10-digit chunk of e.

A Simple Script

http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show\&ixPost=160966\&ixReplies=23

```
#!/bin/sh
echo "scale=1000; e(1)" | bc - | | \
perl -0777 -ne '
s/[^0-9]//g;
for $i (0..length($_)-10)
{
    $j=substr($_,$i,10);
    $j +=0;
    print "$i\t$j\n" if is_p($j);
}
sub is_p {
    my $n = shift;
    return 0 if $n<= 1;
    return 1 if $n<= 3;
    for (2 .. sqrt($n)){
    return O unless $n % $_;
    }
    return 1;
}
```


What was it all about?

The billboard was an ad paid for by Google. The website
http://www. $7427466391 . c o m$
contained another challenge and then asked people to submit their resume.
Google's obsession with e is well-known, since they pledged in their IPO filing to raise e billion dollars, rather than the usual round-number amount of money.

