Shortest Path Algorithms

Andreas Klappenecker
[based on slides by Prof. Welch]

Single Source Shortest Path

Single Source Shortest Path

Given:

- a directed or undirected graph $G=(V, E)$
- a source node sin V
- a weight function w: E -> .

Single Source Shortest Path

Given:

- a directed or undirected graph $G=(V, E)$
- a source node sin V
- a weight function w: E -> R.
- Goal: For each vertex \dagger in V, find a path from s to \dagger in G with minimum weight

Single Source Shortest Path

- Given:
- a directed or undirected graph $G=(V, E)$
- a source node s in V
- a weight function w: E -> R.
- Goal: For each vertex tin V, find a path from s to \dagger in G with minimum weight
Warning! Negative weight cycles are a problem:

Constant Weight Functions

Constant Weight Functions

Suppose that the weights of all edges are the same. How can you solve the singlesource shortest path problem?

Constant Weight Functions

Suppose that the weights of all edges are the same. How can you solve the singlesource shortest path problem?

Breadth-first search can be used to solve the single-source shortest path problem.

Constant Weight Functions

Suppose that the weights of all edges are the same. How can you solve the singlesource shortest path problem?

Breadth-first search can be used to solve the single-source shortest path problem.
Indeed, the tree rooted at s in the BFS forest is the solution.

Intermezzo: Priority Queues

Priority Queues

A min-priority queue is a data structure for maintaining a set S of elements, each with an associated value called key.
This data structure supports the operations:

- insert(S, x) which realizes $S:=S \cup\{x\}$
- minimum(S) which returns the element with the smallest key.
- extract-min(S) which removes and returns the element with the smallest key from S.
decrease-key (S, x, k) which decreases the value of x 's

Simple Array Implementation

Suppose that the elements are numbered from 1 to n, and that the keys are stored in an array key[1..n].

- insert and decrease-key take O (1) time. - extract-min takes $O(n)$ time, as the whole array must be searched for the minimum.

Binary min-heap Implementation

Suppose that we realize the priority queue of a set with n element with a binary min-heap.

- extract-min takes $O(\log n)$ time.
- decrease-key takes $O(\log n)$ time.
- insert takes $O(\log n)$ time.

Building the heap takes $O(n)$ time.

Fibonacci-Heap Implementation

Suppose that we realize the priority queue of a set with n elements with a Fibonacci heap. Then

- extract-min takes $O(\log n)$ amortized time.
- decrease-key takes O(1) amortized time.
- insert takes O(1) time.
[One can realize priority queues with worst case times as above]

Dijkstra's Single Source Shortest Path Algorithm

Dijkstra's SSSP Algorithm

Assumes all edge weights are nonnegative

- Similar to Prim's MST algorithm

Start with source node s and iteratively construct a tree rooted at s

- Each node keeps track of tree node that provides cheapest path from s (not just cheapest path from any tree node)
At each iteration, include the node whose cheapest path from s is the overall cheapest

Prim's vs. Dijkstra's

Prim's MST

Dijkstra's SSSP

Prim's vs. Dijkstra's

Prim's MST

Dijkstra's SSSP

Prim's vs. Dijkstra's

Prim's MST

Dijkstra's SSSP

Implementing Dijkstra's Alg.

- How can each node u keep track of its best path from s?
Keep an estimate, d[u], of shortest path distance from s to u
- Use d as a key in a priority queue When u is added to the tree, check each of u 's neighbors v to see if u provides v with a cheaper path from s:
- compare $d[v]$ to $d[u]+w(u, v)$

Dijkstra's Algorithm

- input: $G=(V, E, w)$ and source node s
// initialization
$\mathrm{d}[\mathrm{s}]$:= 0
$d[v]$:= infinity for all other nodes v
initialize priority queue Q to contain all nodes using d values as keys

Dijkstra's Algorithm

while Q is not empty do

- u:= extract-min(Q)
- for each neighbor v of u do
- if $d[u]+w(u, v)<d[v]$ then // relax
- $d[v]:=d[u]+w(u, v)$
- decrease-key(Q,v,d[v])
- parent(v) :=u

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$\mathrm{~d}[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$\mathrm{~d}[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$d[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$d[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$d[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$d[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$\mathrm{~d}[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$\mathrm{~d}[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$\mathrm{~d}[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Dijkstra's Algorithm Example

a is source node
iteration

	0	1	2	3	4	5
Q	$a b c d e$	$b c d e$	$c d e$	$d e$	d	\varnothing
$\mathrm{~d}[a]$	0	0	0	0	0	0
$\mathrm{~d}[b]$	∞	2	2	2	2	2
$\mathrm{~d}[c]$	∞	12	10	10	10	10
$\mathrm{~d}[d]$	∞	∞	∞	16	13	13
$\mathrm{~d}[e]$	∞	∞	11	11	11	11

Correctness of Dijkstra's Alg.

Let T_{i} be the tree constructed after i-th iteration of the while loop:

- The nodes in T_{i} are not in Q

The edges in T_{i} are indicated by parent variables
Show by induction on i that the path in T_{i} from s to u is a shortest path and has distance $d[u]$, for all u in T_{i}.
Basis: $\mathrm{i}=1$.
s is the only node in T_{1} and $d[s]=0$.

Correctness of Dijkstra's Alg.

Induction: Assume T_{i} is a correct shortest path tree. We need to show that T_{i+1} is a correct shortest path tree as well.

Let u be the node added in iteration i.

- Let $x=\operatorname{parent}(u)$.

Need to show path in $\mathrm{T}_{\mathrm{i}+1}$ from s to u is a shortest path, and has distance $\mathrm{d}[\mathrm{u}]$

Correctness of Dijkstra's Alg

P, path in T_{i+1}
from s to u

Correctness of Dijkstra's Alg

P, path in T_{i+1}
from sto u
$\ldots-\ldots$ P', another
path from s to u

Correctness of Dijkstra's Alg

Correctness of Dijkstra's Alg

Let P1 be part of P' before (a, b).
Let $P 2$ be part of P^{\prime} after (a, b).
$w\left(P^{\prime}\right)=w(P 1)+w(a, b)+w(P 2)$
$\geq w(P 1)+w(a, b)$ (nonneg wts)

\geq wt of path in T_{i} from s to $a+w(a, b)$ (inductive hypothesis)
$\geq w\left(s->x\right.$ path in $\left.T_{i}\right)+w(x, u)$ (alg chose u in iteration i and d-values are accurate, by inductive hypothesis $=\mathrm{w}(\mathrm{P})$.

So P is a shortest path, and $\mathrm{d}[\mathrm{u}]$ is accurate after iteration $\mathrm{i}+1$.

Running Time of Dijstra's Alg.

initialization: insert each node once

- $O\left(V \mathrm{~T}_{\text {ins }}\right)$
$O(V)$ iterations of while loop
- one extract-min per iteration $\Rightarrow O\left(V T_{\text {ex }}\right)$
- for loop inside while loop has variable number of iterations...
- For loop has $O(E)$ iterations total
- one decrease-key per iteration $\Rightarrow>\left(E T_{\text {dec }}\right)$

Running Time using
 Binary Heaps and Fibonacci Heaps

$O\left(V\left(T_{\text {ins }}+T_{e x}\right)+E \cdot T_{\text {dec }}\right)$
If priority queue is implemented with a binary heap, then

- $T_{\text {ins }}=T_{\text {ex }}=T_{\text {dec }}=O(\log \mathrm{~V})$
- total time is $O(E \log V)$

There are fancier implementations of the priority queue, such as Fibonacci heap:

- $T_{\text {ins }}=O(1), T_{\text {ex }}=O(\log V), T_{\text {dec }}=O(1)$ (amortized)
- total time is $O(V \log V+E)$

Using Simpler Heap

$O\left(V\left(T_{\text {ins }}+T_{\text {ex }}\right)+E \cdot T_{\text {dec }}\right)$
If graph is dense, so that $|E|=\Theta\left(V^{2}\right)$, then it doesn' \dagger help to make $T_{\text {ins }}$ and $T_{\text {ex }}$ to be a \dagger most $O(V)$.
Instead, focus on making $T_{\text {dec }}$ be small, say constant.

- Implement priority queue with an unsorted array:

$$
T_{\text {ins }}=O(1), T_{\text {ex }}=O(V), T_{\text {dec }}=O(1)
$$

The Bellman-Ford Algorithm

What About Negative Edge

Dijkstra's SSSP algorithm requires all edge weights to be nonnegative. This is too restrictive, since it suffices to outlaw negative weight cycles.
Bellman-Ford SSSP algorithm can handle negative edge weights.
[It even can detect negative weight cycles if they exist.]

Bellman-Ford: The Basic Idea

Consider each edge (u, v) and see if u offers v a cheaper path from s

- compare d[v] to d[u] + w(u,v)

Repeat this process $|V|-1$ times to ensure that accurate information propgates from s, no matter what order the edges are considered in

Bellman-Ford SSSP Algorithm

- input: directed or undirected graph $G=(V, E, w)$

//initialization

- initialize $d[v]$ to infinity and parent[v] to nil for all vin V other than the source
- initialize d[s] to 0 and parent[s] to s
// main body
- for $i:=1$ to $|V|-1$ do
- for each (u, v) in E do // consider in arbitrary order
- if $d[u]+w(u, v)<d[v]$ then
- $d[v]:=d[u]+w(u, v)$
parent[v]:= u

Bellman-Ford SSSP Algorithm

// check for negative weight cycles
for each (u, v) in E do

- if $d[u]+w(u, v)<d[v]$ then
- output "negative weight cycle exists"

Running Time of Bellman-Ford

$O(V)$ iterations of outer for loop
$O(E)$ iterations of inner for loop
O(VE) time total

Correctness of Bellman-Ford

Assume no negative-weight cycles.
Lemma: $d[v]$ is never an underestimate of the actual shortest path distance from s to v.
Lemma: If there is a shortest s-to-v path containing at most i edges, then after iteration i of the outer for loop, $d[v]$ is at most the actual shortest path distance from s to v.

Theorem: Bellman-Ford is correct.
This follows from the two lemmas and the fact ${ }^{29}$

Bellman-Ford Example

process edges in order
(c,b)
(a, b)
(c, a)
(s, a)
(s, c)

Exercise!

Correctness of Bellman-Ford

Suppose there is a negative weight cycle.
Then the distance will decrease even after iteration $|V|-1$
shortest path distance is negative infinity This is what the last part of the code checks for.

The Boost Graph Library

The BGL contains generic implementations of all the graph algorithms that we have discussed:

- Breadth-First-Search
- Depth-First-Search
- Kruskal's MST algorithm
- Prim's MST algorithm
- Strongly Connected Components
- Dijkstra's SSSP algorithm
- Bellman-Ford SSSP algorithm

I recommend that you gain experience with this useful library. Recommended reading: The Boost Graph Library by J.G. Siek, L.-Q. Lee, and A. Lumsdaine, Addison-Wesley, 2002.

