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Single Source Shortest Path 

• Given:  
• a directed or undirected graph G = (V,E) 
• a source node s in V
• a weight function w: E -> R. 

• Goal:  For each vertex t in V, find a path from s to t 
in G with minimum weight

Warning!  Negative weight cycles are a problem:

s t
4

−5
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Constant Weight Functions

Suppose that the weights of all edges are 
the same. How can you solve the single-
source shortest path problem? 

Breadth-first search can be used to solve 
the single-source shortest path problem. 
Indeed, the tree rooted at s in the BFS 
forest is the solution.
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Intermezzo: Priority Queues
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Priority Queues

A min-priority queue is a data structure for maintaining 
a set S of elements, each with an associated value 
called key. 
This data structure supports the operations: 
• insert(S,x) which realizes S := S ∪ {x}
• minimum(S) which returns the element with the 
smallest key. 
• extract-min(S) which removes and returns the 
element with the smallest key from S. 
• decrease-key(S,x,k) which decreases the value of x’s 5
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Simple Array Implementation

Suppose that the elements are numbered 
from 1 to n, and that the keys are stored 
in an array key[1..n]. 
• insert and decrease-key take O(1) time.
• extract-min takes O(n) time, as the 
whole array must be searched for the 
minimum. 

6
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Binary min-heap Implementation

Suppose that we realize the priority 
queue of a set with n element with a 
binary min-heap. 
• extract-min takes O(log n) time.
• decrease-key takes O(log n) time.
• insert takes O(log n) time.
Building the heap takes O(n) time. 

7
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Fibonacci-Heap Implementation

Suppose that we realize the priority queue 
of a set with n elements with a Fibonacci 
heap. Then
• extract-min takes O(log n) amortized time. 
• decrease-key takes O(1) amortized time.
• insert takes O(1) time.
[One can realize priority queues with worst case times as above] 

8
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Dijkstra’s Single Source Shortest 
Path Algorithm
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Dijkstra's SSSP Algorithm

• Assumes all edge weights are nonnegative
• Similar to Prim's MST algorithm
• Start with source node s and iteratively 

construct a tree rooted at s
• Each node keeps track of tree node that 

provides cheapest path from s (not just 
cheapest path from any tree node)

• At each iteration, include the node whose 
cheapest path from s is the overall cheapest
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Prim's vs. Dijkstra's
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Implementing Dijkstra's Alg.

• How can each node u keep track of its best 
path from s?

• Keep an estimate, d[u], of shortest path 
distance from s to u

• Use d as a key in a priority queue
• When u is added to the tree, check each of 

u's neighbors v to see if u provides v with a 
cheaper path from s:
• compare d[v] to d[u] + w(u,v)
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Dijkstra's Algorithm

• input:  G = (V,E,w) and source node s
// initialization
• d[s] := 0
• d[v] := infinity for all other nodes v
• initialize priority queue Q to contain all 

nodes using d values as keys
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Dijkstra's Algorithm

• while Q is not empty do
• u := extract-min(Q)
• for each neighbor v of u do

• if d[u] + w(u,v) < d[v] then // relax
• d[v] := d[u] + w(u,v)
• decrease-key(Q,v,d[v])
• parent(v) := u
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Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5
Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration
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Correctness of Dijkstra's Alg.

• Let Ti be the tree constructed after i-th 
iteration of the while loop:
• The nodes in Ti are not in Q

• The edges in Ti are indicated by parent variables

• Show by induction on i that the path in Ti 
from s to u is a shortest path and has 
distance d[u], for all u in Ti.

• Basis:  i = 1.  
   s is the only node in T1 and d[s] = 0. 
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Correctness of Dijkstra's Alg.

• Induction:  Assume Ti is a correct shortest path tree. 
We need to show that Ti+1 is a correct shortest path 
tree as well.

• Let u be the node added in iteration i.
• Let x = parent(u).

s x

Ti

u

Ti+1

Need to show 
path in Ti+1 from s 
to u is a shortest 
path, and has 
distance d[u]
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Correctness of Dijkstra's Alg

s
x

Ti

u

Ti+1

P, path in Ti+1

from s to u
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Correctness of Dijkstra's Alg

s
x

Ti

u

Ti+1

P, path in Ti+1

from s to u

a

b

P', another
path from s to u
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Correctness of Dijkstra's Alg

s
x

Ti

u

Ti+1

P, path in Ti+1

from s to u

(a,b) is first edge in P' that
leaves Ti

a

b

P', another
path from s to u
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Correctness of Dijkstra's Alg

s
x

Ti

u
Ti+1

a

b
P'

PLet P1 be part of P' before (a,b).

Let P2 be part of P' after (a,b).

w(P') = w(P1) + w(a,b) + w(P2)

        ≥ w(P1) + w(a,b)  (nonneg wts)

        ≥ wt of path in Ti from s to a + w(a,b) (inductive hypothesis)

        ≥ w(s->x path in Ti) + w(x,u) (alg chose u in iteration i and

                        d-values are accurate, by inductive hypothesis

        = w(P).

So P is a shortest path, and d[u] is accurate after iteration i+1.
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Running Time of Dijstra's Alg.

• initialization:  insert each node once
• O(V Tins)

• O(V) iterations of while loop
• one extract-min per iteration => O(V Tex)

• for loop inside while loop has variable number of 
iterations…

• For loop has O(E) iterations total
• one decrease-key per iteration => O(E Tdec)
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Running Time using 
Binary Heaps and Fibonacci Heaps

• O(V(Tins + Tex) + E•Tdec)

• If priority queue is implemented with a binary 
heap, then 
• Tins = Tex = Tdec = O(log V)

• total time is O(E log V)

• There are fancier implementations of the 
priority queue, such as Fibonacci heap:
• Tins = O(1), Tex = O(log V), Tdec = O(1) (amortized)

• total time is O(V log V + E)
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Using Simpler Heap 

• O(V(Tins + Tex) + E•Tdec)
• If graph is dense, so that |E| = Θ(V2), then it 

doesn't help to make Tins and Tex to be at 
most O(V).

• Instead, focus on making Tdec be small, say 
constant.

• Implement priority queue with an unsorted 
array:
• Tins = O(1), Tex = O(V), Tdec = O(1)
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The Bellman-Ford Algorithm

Friday, October 12, 2012



24

What About Negative Edge 

• Dijkstra's SSSP algorithm requires all 
edge weights to be nonnegative. This is 
too restrictive, since it suffices to  
outlaw negative weight cycles. 

• Bellman-Ford SSSP algorithm can 
handle negative edge weights.             
[It even can detect negative weight 
cycles if they exist.] 
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Bellman-Ford: The Basic Idea

• Consider each edge (u,v) and see if u 
offers v a cheaper path from s
• compare d[v] to d[u] + w(u,v)

• Repeat this process |V| - 1 times to 
ensure that accurate information 
propgates from s, no matter what order 
the edges are considered in
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Bellman-Ford SSSP Algorithm

• input:  directed or undirected graph G = (V,E,w)
//initialization
• initialize d[v] to infinity and parent[v] to nil for all v in V 

other than the source
• initialize d[s] to 0 and parent[s] to s
// main body
• for i := 1 to |V| - 1 do

• for each (u,v) in E do    // consider in arbitrary order
• if d[u] + w(u,v) < d[v] then

• d[v] := d[u] + w(u,v)
• parent[v] := u
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Bellman-Ford SSSP Algorithm

// check for negative weight cycles
• for each (u,v) in E do

• if d[u] + w(u,v) < d[v] then
• output "negative weight cycle exists"
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Running Time of Bellman-Ford

• O(V) iterations of outer for loop
• O(E) iterations of inner for loop
• O(VE) time total
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Correctness of Bellman-Ford

Assume no negative-weight cycles.
Lemma: d[v] is never an underestimate of the 

actual shortest path distance from s to v.
Lemma: If there is a shortest s-to-v path 

containing at most i edges, then after 
iteration i of the outer for loop, d[v] is at 
most the actual shortest path distance from 
s to v.

Theorem:  Bellman-Ford is correct.
This follows from the two lemmas and the fact 
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Bellman-Ford Example

s

c

a
b

3

—4
4

2

1

process edges in order
(c,b)
(a,b)
(c,a)
(s,a)
(s,c)

Exercise!

Friday, October 12, 2012



31

Correctness of Bellman-Ford

• Suppose there is a negative weight 
cycle.

• Then the distance will decrease even 
after iteration |V| - 1
• shortest path distance is negative infinity

• This is what the last part of the code 
checks for.
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The Boost Graph Library

The BGL contains generic implementations of all the graph 
algorithms that we have discussed: 
• Breadth-First-Search
• Depth-First-Search
• Kruskal’s MST algorithm
• Prim’s MST algorithm
• Strongly Connected Components
• Dijkstra’s SSSP algorithm
• Bellman-Ford SSSP algorithm
I recommend that you gain experience with this useful library. 
Recommended reading: The Boost Graph Library by J.G. Siek, L.-Q. 
Lee, and A. Lumsdaine, Addison-Wesley, 2002. 
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