Deterministic and Randomized Quicksort

Andreas Klappenecker

- Deterministic Quicksort
- Modify Quicksort to obtain better asymptotic bound
- Linear-time median algorithm
- Randomized Quicksort

Deterministic Quicksort

Quicksort(A,p,r) if p < r then q := Partition(A,p,r); // rearrange A[p..r] in place Quicksort(A, p,q-1); Quicksort(A,p+1,r);

Divide-and-Conquer

The design of Quicksort is based on the divide-and-conquer paradigm.

a) **Divide**: Partition the array A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1,r] such that

- A[x] <= A[q] for all x in [p..q-1]

- A[x] > A[q] for all x in [q+1,r]

b) Conquer: Recursively sort A[p..q-1] and A[q+1,r]

c) Combine: nothing to do here

Partition

Select pivot (orange element) and rearrange: larger elements to the left of the pivot (red) elements not exceeding the pivot to the right (yellow)

Partition

```
Partition(A,p,r)
   x := A[r]; // select rightmost element as pivot
   i := p-1;
   for j = p to r-1 do
       if A[j] <= x then i := i+1; swap(A[i], A[j]); fi;
   od:
                                  Throughout the for loop:

    If p <= k <= i then A[k]<= x</li>

   swap(A[i+1],A[r])

    If i+1<=k <= j-1 then A[k] > x

   return i+1;
                                  • If k=r, then A[k] = x

    A[j..r-1] is unstructured
```

Partition - Loop - Example

tor washing me we competend the in a constant that the way bit in a stand of a strange of the stand of the st

	2	8	7	1	3	5	6	4		2	1	7	8	3	5	6	4
i	p,j							r		р	i			j			r
	2	8	7	1	3	5	6	4		2	1	3	8	7	5	6	4
	p,i	j						r		р	i				j		r
	2	8	7	1	3	5	6	4		2	1	3	8	7	5	6	4
	p,i		j					r		р		i				j	r
The second second	-		3														
	2	8	7	1	3	5	6	4		2	1	3	8	7	5	6	4

After the loop, the partition routine swaps the leftmost element of the right partition with the pivot element:

2	1	3	8	7	5	6	4
р		i					r

swap(A[i+1],A[r])

2	1	3	4	7	5	6	8
р		i					r

now recursively sort yellow and red parts.

Worst-Case Partitioning

The worst-case behavior for quicksort occurs on an input of length n when partitioning produces just one subproblem with n-1 elements and one subproblem with 0 elements. Therefore the recurrence for the running time T(n) is: $T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n) = \Theta(n^2)$

Perhaps we should call this algorithm pokysort?

"Better" Quicksort and Linear Median Algorithm

Wanting at most of a fait

Best-case Partitioning

Best-case partitioning:

If partition produces two subproblems that are roughly of the same size, then the recurrence of the running time is

 $T(n) <= 2T(n/2) + \Theta(n)$

so that $T(n) = O(n \log n)$

Can we achieve this bound?

Yes, modify the algorithm. Use a linear-time median algorithm to find median, then partition using median as pivot.

Linear Median Algorithm

Let A[1..n] be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each group. [You can do that with 6 comparisons]

- Make an array U[1..n/5] of the medians and find the median m of U by recursively calling the algorithm.

- Partition the array A using the median-of-medians m to find the rank of m in A. If m is of larger rank than the median of A, eliminate all elements > m. If m is of smaller rank than the median of A, then eliminate all elements <= m. Repeat the search on the smaller array.

Linear-Time Median Finding

How many elements do we eliminate in each round?

The array U contains n/5 elements. Thus, n/10 elements of U are larger (smaller) than m, since m is the median of U. Since each element in U is a median itself, there are 3n/10 elements in A that are larger (smaller) than m.

Therefore, we eliminate (3/10)n elements in each round.

Thus, the time T(n) to find the median is

 $T(n) \le T(n/5) + T(7n/10) + 6n/5.$

// median of U, recursive call, and finding medians of groups

Solving the Recurrence

Suppose that $T(n) \leq cn$ (for some c to be determined later) $T(n) \le c(n/5) + c(7n/10) + 6n/5 = c(9n/10) + 6n/5$ If this is to be <= cn, then we need to have c(9n/10)+12n/10 <= cn or 12 <= c Suppose that T(1) = d. Then choose $c = max\{12, d\}$. An easy proof by induction yields $T(n) \ll cn$.

Goal Achieved?

We can accomplish that quicksort achieves O(n log n) running time, if we use the linear-time median finding algorithm to select the pivot element.

Unfortunately, the constant in the big Oh expression becomes large, and quicksort looses some of its appeal.

Is there a simpler solution?

Randomized Quicksort

the setting to a cost of the set of the set

Deterministic Quicksort

Randomized-Quicksort(A,p,r) if p < r then q := Randomized-Partition(A,p,r); Randomized-Quicksort(A, p,q-1); Randomized-Quicksort(A,p+1,r);

Partition

Randomized-Partition(A,p,r)
i := Random(p,r);
swap(A[i],A[r]);
Partition(A,p,r);

Almost the same as Partition, but now the pivot element is not the rightmost element, but rather an element from A[p..r] that is chosen uniformly at random.

Goal

The running time of quicksort depends mostly on the number of comparisons performed in all calls to the Randomized-Partition routine.

Let X denote the random variable counting the number of comparisons in all calls to Randomized-Partition.

Notations

Let z_i denote the i-th smallest element of A[1..n]. Thus A[1..n] sorted is $\langle z_1, z_2, ..., z_n \rangle$.

Let $Z_{ij} = \{z_i, ..., z_j\}$ denote the set of elements between z_i and z_j , including these elements.

 $X_{ij} = I\{ z_i \text{ is compared to } z_j \}.$

Thus, X_{ij} is an indicator random variable for the event that the i-th smallest and the j-th smallest elements of A are compared in an execution of quicksort.

Number of Comparisons

Since each pair of elements is compared at most once by quicksort, the number X of comparisons is given

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

Therefore, the expected number of comparisons is

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[z_i \text{ is compared to } z_j]$$

When do we compare?

When do we compare z_i to z_j ?

Suppose we pick a pivot element in $Z_{ij} = \{z_i, ..., z_j\}$.

If $z_i < x < z_j$ then z_i and z_j will land in different partitions and will never be compared afterwards.

Therefore, z_i and z_j will be compared if and only if the first element of Z_{ij} to be picked as pivot element is contained in the set $\{z_i, z_j\}$.

Probability of Comparison

 $\Pr[z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}] = \Pr[z_i \text{ is the first pivot chosen from } Z_{ij}] + \Pr[z_j \text{ is the first pivot chosen from } Z_{ij}] = \frac{1}{j-i+1} + \frac{1}{j-i+1} = \frac{2}{j-i+1}$

Expected Number of Comparisons

 $E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$ $= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$ $< \sum_{k=1}^{n-1} \sum_{k=1}^{n-1} \frac{2}{k}$ i=1 k=1n-1 $= \sum O(\log n)$ $= \begin{array}{c} \overline{i=1} \\ O(n\log n) \end{array}$

Conclusion

It follows that the expected running time of Randomized-Quicksort is O(n log n).

It is unlikely that this algorithm will choose a terribly unbalanced partition each time, so the performance is very good almost all the time.